{"title":"NM景观:超越朝鲜","authors":"N. Manukyan, M. Eppstein, J. Buzas","doi":"10.1145/2598394.2598403","DOIUrl":null,"url":null,"abstract":"For the past 25 years, NK landscapes have been the classic benchmarks for modeling combinatorial fitness landscapes with epistatic interactions between up to K+1 of N binary features. However, the ruggedness of NK landscapes grows in large discrete jumps as K increases, and computing the global optimum of unrestricted NK landscapes is an NP-complete problem. Walsh polynomials are a superset of NK landscapes that solve some of the problems. In this paper, we propose a new class of benchmarks called NM landscapes, where M refers to the Maximum order of epistatic interactions between N features. NM landscapes are much more smoothly tunable in ruggedness than NK landscapes and the location and value of the global optima are trivially known. For a subset of NM landscapes the location and magnitude of global minima are also easily computed, enabling proper normalization of fitnesses. NM landscapes are simpler than Walsh polynomials and can be used with alphabets of any arity, from binary to real-valued. We discuss several advantages of NM landscapes over NK landscapes and Walsh polynomials as benchmark problems for evaluating search strategies.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"NM landscapes: beyond NK\",\"authors\":\"N. Manukyan, M. Eppstein, J. Buzas\",\"doi\":\"10.1145/2598394.2598403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the past 25 years, NK landscapes have been the classic benchmarks for modeling combinatorial fitness landscapes with epistatic interactions between up to K+1 of N binary features. However, the ruggedness of NK landscapes grows in large discrete jumps as K increases, and computing the global optimum of unrestricted NK landscapes is an NP-complete problem. Walsh polynomials are a superset of NK landscapes that solve some of the problems. In this paper, we propose a new class of benchmarks called NM landscapes, where M refers to the Maximum order of epistatic interactions between N features. NM landscapes are much more smoothly tunable in ruggedness than NK landscapes and the location and value of the global optima are trivially known. For a subset of NM landscapes the location and magnitude of global minima are also easily computed, enabling proper normalization of fitnesses. NM landscapes are simpler than Walsh polynomials and can be used with alphabets of any arity, from binary to real-valued. We discuss several advantages of NM landscapes over NK landscapes and Walsh polynomials as benchmark problems for evaluating search strategies.\",\"PeriodicalId\":298232,\"journal\":{\"name\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2598394.2598403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2598403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在过去的25年里,NK景观一直是建模组合适应度景观的经典基准,这些景观具有多达K+1 (N个)二元特征之间的上位相互作用。然而,随着K的增加,NK景观的坚固性以离散的大跳跃增长,计算不受限制的NK景观的全局最优是一个np完全问题。沃尔什多项式是NK景观的超集,可以解决一些问题。在本文中,我们提出了一类新的基准,称为NM景观,其中M是指N个特征之间的上位交互的最大阶。NM景观在坚固性上比NK景观更平滑可调,并且全局最优的位置和值是微不足道的。对于NM景观的一个子集,全局最小值的位置和大小也很容易计算,从而实现适当的适应度归一化。NM景观比Walsh多项式更简单,并且可以用于从二进制到实值的任意数的字母。我们讨论了NM景观相对于NK景观和Walsh多项式作为评估搜索策略的基准问题的几个优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NM landscapes: beyond NK
For the past 25 years, NK landscapes have been the classic benchmarks for modeling combinatorial fitness landscapes with epistatic interactions between up to K+1 of N binary features. However, the ruggedness of NK landscapes grows in large discrete jumps as K increases, and computing the global optimum of unrestricted NK landscapes is an NP-complete problem. Walsh polynomials are a superset of NK landscapes that solve some of the problems. In this paper, we propose a new class of benchmarks called NM landscapes, where M refers to the Maximum order of epistatic interactions between N features. NM landscapes are much more smoothly tunable in ruggedness than NK landscapes and the location and value of the global optima are trivially known. For a subset of NM landscapes the location and magnitude of global minima are also easily computed, enabling proper normalization of fitnesses. NM landscapes are simpler than Walsh polynomials and can be used with alphabets of any arity, from binary to real-valued. We discuss several advantages of NM landscapes over NK landscapes and Walsh polynomials as benchmark problems for evaluating search strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary synthesis of dynamical systems: the past, current, and future Incremental evolution of HERCL programs for robust control Selecting evolutionary operators using reinforcement learning: initial explorations Flood evolution: changing the evolutionary substrate from a path of stepping stones to a field of rocks Artificial immune systems for optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1