cnn在场景解析任务中的填充调查

Yu-Hui Huang, M. Proesmans, L. Gool
{"title":"cnn在场景解析任务中的填充调查","authors":"Yu-Hui Huang, M. Proesmans, L. Gool","doi":"10.23919/MVA57639.2023.10216084","DOIUrl":null,"url":null,"abstract":"Zero padding is widely used in convolutional neural networks (CNNs) to prevent the size of feature maps diminishing too fast. However, it has been claimed to disturb the statistics at the border [9]. In this work, we compare various padding methods for the scene parsing task and propose an alternative padding method (CApadding) by extending the image to alleviate the border issue. Experiments on Cityspaces [2] and Deep-Globe [3] show that models with the proposed padding method achieves higher mean Intersection-Over-Union (IoU) than the zero padding based models.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Padding Investigations for CNNs in Scene Parsing Tasks\",\"authors\":\"Yu-Hui Huang, M. Proesmans, L. Gool\",\"doi\":\"10.23919/MVA57639.2023.10216084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zero padding is widely used in convolutional neural networks (CNNs) to prevent the size of feature maps diminishing too fast. However, it has been claimed to disturb the statistics at the border [9]. In this work, we compare various padding methods for the scene parsing task and propose an alternative padding method (CApadding) by extending the image to alleviate the border issue. Experiments on Cityspaces [2] and Deep-Globe [3] show that models with the proposed padding method achieves higher mean Intersection-Over-Union (IoU) than the zero padding based models.\",\"PeriodicalId\":338734,\"journal\":{\"name\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA57639.2023.10216084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10216084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

零填充被广泛应用于卷积神经网络(cnn)中,以防止特征映射的大小衰减过快。然而,有人声称它扰乱了边境的统计数据[9]。在这项工作中,我们比较了场景解析任务的各种填充方法,并提出了一种替代填充方法(CApadding),通过扩展图像来缓解边界问题。在Cityspaces[2]和Deep-Globe[3]上的实验表明,与基于零填充的模型相比,采用本文提出的填充方法的模型获得了更高的平均交叉-超联合(Intersection-Over-Union, IoU)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Padding Investigations for CNNs in Scene Parsing Tasks
Zero padding is widely used in convolutional neural networks (CNNs) to prevent the size of feature maps diminishing too fast. However, it has been claimed to disturb the statistics at the border [9]. In this work, we compare various padding methods for the scene parsing task and propose an alternative padding method (CApadding) by extending the image to alleviate the border issue. Experiments on Cityspaces [2] and Deep-Globe [3] show that models with the proposed padding method achieves higher mean Intersection-Over-Union (IoU) than the zero padding based models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Small Object Detection for Birds with Swin Transformer CG-based dataset generation and adversarial image conversion for deep cucumber recognition Uncertainty Criteria in Active Transfer Learning for Efficient Video-Specific Human Pose Estimation Joint Learning with Group Relation and Individual Action Diabetic Retinopathy Grading based on a Sparse Network Fusion of Heterogeneous ConvNeXt Models with Category Attention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1