基于gis的多标准决策支持系统和医院选址的机器学习:案例研究奥兰,阿尔及利亚

Khadidja Benmoussa, D. Hamdadou, Zine El Abidine Roukh
{"title":"基于gis的多标准决策支持系统和医院选址的机器学习:案例研究奥兰,阿尔及利亚","authors":"Khadidja Benmoussa, D. Hamdadou, Zine El Abidine Roukh","doi":"10.4018/ijssci.285592","DOIUrl":null,"url":null,"abstract":"The selection of hospital sites is one of the most important choice a decision maker has to take so as to resist the pandemic. The decision may considerably affect the outbreak transmission in terms of efficiency , budget, etc. The main targeted objective of this study is to find the ideal location where to set up a hospital in the willaya of Oran Alg. For this reason, we have used a geographic information system coupled to the multi-criteria analysis method AHP in order to evaluate diverse criteria of physiological positioning , environmental and economical. Another objective of this study is to evaluate the advanced techniques of the automatic learning . the method of the random forest (RF) for the patterning of the hospital site selection in the willaya of Oran. The result of our study may be useful to decision makers to know the suitability of the sites as it provides a high level of confidence and consequently accelerate the power to control the COVID19 pandemic.","PeriodicalId":432255,"journal":{"name":"Int. J. Softw. Sci. Comput. Intell.","volume":"1040 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"GIS-Based Multi-Criteria Decision-Support System and Machine Learning for Hospital Site Selection: Case Study Oran, Algeria\",\"authors\":\"Khadidja Benmoussa, D. Hamdadou, Zine El Abidine Roukh\",\"doi\":\"10.4018/ijssci.285592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The selection of hospital sites is one of the most important choice a decision maker has to take so as to resist the pandemic. The decision may considerably affect the outbreak transmission in terms of efficiency , budget, etc. The main targeted objective of this study is to find the ideal location where to set up a hospital in the willaya of Oran Alg. For this reason, we have used a geographic information system coupled to the multi-criteria analysis method AHP in order to evaluate diverse criteria of physiological positioning , environmental and economical. Another objective of this study is to evaluate the advanced techniques of the automatic learning . the method of the random forest (RF) for the patterning of the hospital site selection in the willaya of Oran. The result of our study may be useful to decision makers to know the suitability of the sites as it provides a high level of confidence and consequently accelerate the power to control the COVID19 pandemic.\",\"PeriodicalId\":432255,\"journal\":{\"name\":\"Int. J. Softw. Sci. Comput. Intell.\",\"volume\":\"1040 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Softw. Sci. Comput. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijssci.285592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Sci. Comput. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijssci.285592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

医院地点的选择是决策者为抵御大流行而必须做出的最重要的选择之一。这一决定可能在效率、预算等方面对疫情传播产生重大影响。本研究的主要目标是在奥兰阿尔格的维拉亚找到建立医院的理想地点。为此,我们采用地理信息系统与多准则分析法AHP相结合的方法,对生理定位、环境和经济等多种准则进行评价。本研究的另一个目的是评估自动学习的先进技术。随机森林(RF)法在奥兰村的医院选址模式。我们的研究结果可能有助于决策者了解这些站点的适用性,因为它提供了高度的信心,从而加快了控制covid - 19大流行的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GIS-Based Multi-Criteria Decision-Support System and Machine Learning for Hospital Site Selection: Case Study Oran, Algeria
The selection of hospital sites is one of the most important choice a decision maker has to take so as to resist the pandemic. The decision may considerably affect the outbreak transmission in terms of efficiency , budget, etc. The main targeted objective of this study is to find the ideal location where to set up a hospital in the willaya of Oran Alg. For this reason, we have used a geographic information system coupled to the multi-criteria analysis method AHP in order to evaluate diverse criteria of physiological positioning , environmental and economical. Another objective of this study is to evaluate the advanced techniques of the automatic learning . the method of the random forest (RF) for the patterning of the hospital site selection in the willaya of Oran. The result of our study may be useful to decision makers to know the suitability of the sites as it provides a high level of confidence and consequently accelerate the power to control the COVID19 pandemic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge Discovery of Hospital Medical Technology Based on Partial Ordered Structure Diagrams Artificial Intelligence Techniques to improve cognitive traits of Down Syndrome Individuals: An Analysis TA-WHI: Text Analysis of Web-Based Health Information Detection of Distributed Denial of Service (DDoS) Attacks Using Computational Intelligence and Majority Vote-Based Ensemble Approach Model-Based Method for Optimisation of an Adaptive System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1