SVBO:基于支持向量的过采样处理k-NN的类不平衡

A. Ghazikhani, R. Monsefi, H. Yazdi
{"title":"SVBO:基于支持向量的过采样处理k-NN的类不平衡","authors":"A. Ghazikhani, R. Monsefi, H. Yazdi","doi":"10.1109/IRANIANCEE.2012.6292427","DOIUrl":null,"url":null,"abstract":"We propose a novel algorithm for handling class imbalance in the k-NN classifier. Class imbalance is a problem occurring in some valuable data such as medical diagnosis, fraud detection, oil spills and etc. The problem influences all supervised classification algorithms therefore a large amount of research is being done. We tackle the problem by preprocessing the data using oversampling techniques. A two phase algorithm, based on Support Vector Data Description (SVDD) is proposed. SVDD is a tool for data description. In our approach we firstly describe data from the minority class i.e. the class with less data using SVDD. This is followed by oversampling of the support vectors, which is suitable for k-NN. We evaluate our method using real world datasets with different imbalance ratios and compare it with four other oversampling methods namely SMOTE, Borderline SMOTE, random oversampling and cluster based sampling. The results show that the proposed algorithm is a suitable preprocessing method for the k-NN classifier.","PeriodicalId":308726,"journal":{"name":"20th Iranian Conference on Electrical Engineering (ICEE2012)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SVBO: Support Vector-Based Oversampling for handling class imbalance in k-NN\",\"authors\":\"A. Ghazikhani, R. Monsefi, H. Yazdi\",\"doi\":\"10.1109/IRANIANCEE.2012.6292427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel algorithm for handling class imbalance in the k-NN classifier. Class imbalance is a problem occurring in some valuable data such as medical diagnosis, fraud detection, oil spills and etc. The problem influences all supervised classification algorithms therefore a large amount of research is being done. We tackle the problem by preprocessing the data using oversampling techniques. A two phase algorithm, based on Support Vector Data Description (SVDD) is proposed. SVDD is a tool for data description. In our approach we firstly describe data from the minority class i.e. the class with less data using SVDD. This is followed by oversampling of the support vectors, which is suitable for k-NN. We evaluate our method using real world datasets with different imbalance ratios and compare it with four other oversampling methods namely SMOTE, Borderline SMOTE, random oversampling and cluster based sampling. The results show that the proposed algorithm is a suitable preprocessing method for the k-NN classifier.\",\"PeriodicalId\":308726,\"journal\":{\"name\":\"20th Iranian Conference on Electrical Engineering (ICEE2012)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"20th Iranian Conference on Electrical Engineering (ICEE2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANCEE.2012.6292427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"20th Iranian Conference on Electrical Engineering (ICEE2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2012.6292427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种新的k-NN分类器中处理类不平衡的算法。类不平衡是在医疗诊断、欺诈检测、石油泄漏等一些有价值的数据中出现的问题。这个问题影响到所有的监督分类算法,因此人们进行了大量的研究。我们通过使用过采样技术对数据进行预处理来解决这个问题。提出了一种基于支持向量数据描述(SVDD)的两阶段算法。SVDD是一种数据描述工具。在我们的方法中,我们首先描述来自少数类的数据,即使用SVDD的数据较少的类。接下来是支持向量的过采样,这适用于k-NN。我们使用具有不同失衡比率的真实世界数据集来评估我们的方法,并将其与其他四种过采样方法(SMOTE, Borderline SMOTE,随机过采样和基于聚类的采样)进行比较。结果表明,该算法是一种适用于k-NN分类器的预处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SVBO: Support Vector-Based Oversampling for handling class imbalance in k-NN
We propose a novel algorithm for handling class imbalance in the k-NN classifier. Class imbalance is a problem occurring in some valuable data such as medical diagnosis, fraud detection, oil spills and etc. The problem influences all supervised classification algorithms therefore a large amount of research is being done. We tackle the problem by preprocessing the data using oversampling techniques. A two phase algorithm, based on Support Vector Data Description (SVDD) is proposed. SVDD is a tool for data description. In our approach we firstly describe data from the minority class i.e. the class with less data using SVDD. This is followed by oversampling of the support vectors, which is suitable for k-NN. We evaluate our method using real world datasets with different imbalance ratios and compare it with four other oversampling methods namely SMOTE, Borderline SMOTE, random oversampling and cluster based sampling. The results show that the proposed algorithm is a suitable preprocessing method for the k-NN classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometrical analysis of altitude estimation error caused by pixel quantization in stereo vision Time-domain MoM for the scattering analysis of thin-wire structures within a ground using band-limited Second-Order Lagrange temporal basis functions Variable-structure position control-a class of fast and robust controllers for synchronous reluctance motor drives Analysis of corona effect on lightning performance of HV overhead transmission line using ATP/EMTP Font recognition using Variogram fractal dimension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1