简化量化测量集的梯度下降算法性能

I. Stanković, M. Brajović, M. Daković, C. Ioana
{"title":"简化量化测量集的梯度下降算法性能","authors":"I. Stanković, M. Brajović, M. Daković, C. Ioana","doi":"10.1109/MECO.2019.8760054","DOIUrl":null,"url":null,"abstract":"The quantization (digitalization) of measurements greatly affects the reconstruction performance, especially in algorithms based on the reconstruction in the measurement domain. However, it provides a significant advantage in the hardware implementation sense. In this paper, we analyze the performance of the gradient-based algorithm in the signal reconstruction based on a reduced set of digital measurements. This algorithm is considered as a powerful tool for the reconstruction of various types of signals. The paper investigates the accuracy of the algorithm using $B$-bit quantized measurements. The reconstruction performance is analyzed through numerical examples.","PeriodicalId":141324,"journal":{"name":"2019 8th Mediterranean Conference on Embedded Computing (MECO)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gradient-Descent Algorithm Performance With Reduced Set of Quantized Measurements\",\"authors\":\"I. Stanković, M. Brajović, M. Daković, C. Ioana\",\"doi\":\"10.1109/MECO.2019.8760054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quantization (digitalization) of measurements greatly affects the reconstruction performance, especially in algorithms based on the reconstruction in the measurement domain. However, it provides a significant advantage in the hardware implementation sense. In this paper, we analyze the performance of the gradient-based algorithm in the signal reconstruction based on a reduced set of digital measurements. This algorithm is considered as a powerful tool for the reconstruction of various types of signals. The paper investigates the accuracy of the algorithm using $B$-bit quantized measurements. The reconstruction performance is analyzed through numerical examples.\",\"PeriodicalId\":141324,\"journal\":{\"name\":\"2019 8th Mediterranean Conference on Embedded Computing (MECO)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th Mediterranean Conference on Embedded Computing (MECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MECO.2019.8760054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO.2019.8760054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

测量的量化(数字化)对重建性能有很大影响,尤其是基于测量域重建的算法。然而,它在硬件实现方面提供了一个显著的优势。在本文中,我们分析了基于梯度的算法在基于简化的数字测量集的信号重构中的性能。该算法被认为是重建各种类型信号的有力工具。本文采用$B$位量化测量来考察该算法的精度。通过数值算例分析了重构性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gradient-Descent Algorithm Performance With Reduced Set of Quantized Measurements
The quantization (digitalization) of measurements greatly affects the reconstruction performance, especially in algorithms based on the reconstruction in the measurement domain. However, it provides a significant advantage in the hardware implementation sense. In this paper, we analyze the performance of the gradient-based algorithm in the signal reconstruction based on a reduced set of digital measurements. This algorithm is considered as a powerful tool for the reconstruction of various types of signals. The paper investigates the accuracy of the algorithm using $B$-bit quantized measurements. The reconstruction performance is analyzed through numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
E-Learning Tool to Enhance Technological Pedagogical Content Knowledge A scalable Echo State Networks hardware generator for embedded systems using high-level synthesis Exploiting Task-based Parallelism in Application Loops E-health Card Information System: Case Study Health Insurance Fund of Montenegro Smart Universal Multifunctional Digital Terminal/Portal Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1