会议中ASR的分层Pitman-Yor语言模型

Songfang Huang, S. Renals
{"title":"会议中ASR的分层Pitman-Yor语言模型","authors":"Songfang Huang, S. Renals","doi":"10.1109/ASRU.2007.4430096","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the application of a hierarchical Bayesian language model (LM) based on the Pitman-Yor process for automatic speech recognition (ASR) of multiparty meetings. The hierarchical Pitman-Yor language model (HPY-LM) provides a Bayesian interpretation of LM smoothing. An approximation to the HPYLM recovers the exact formulation of the interpolated Kneser-Ney smoothing method in n-gram models. This paper focuses on the application and scalability of HPYLM on a practical large vocabulary ASR system. Experimental results on NIST RT06s evaluation meeting data verify that HPYLM is a competitive and promising language modeling technique, which consistently performs better than interpolated Kneser-Ney and modified Kneser-Ney n-gram LMs in terms of both perplexity and word error rate.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Hierarchical Pitman-Yor language models for ASR in meetings\",\"authors\":\"Songfang Huang, S. Renals\",\"doi\":\"10.1109/ASRU.2007.4430096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate the application of a hierarchical Bayesian language model (LM) based on the Pitman-Yor process for automatic speech recognition (ASR) of multiparty meetings. The hierarchical Pitman-Yor language model (HPY-LM) provides a Bayesian interpretation of LM smoothing. An approximation to the HPYLM recovers the exact formulation of the interpolated Kneser-Ney smoothing method in n-gram models. This paper focuses on the application and scalability of HPYLM on a practical large vocabulary ASR system. Experimental results on NIST RT06s evaluation meeting data verify that HPYLM is a competitive and promising language modeling technique, which consistently performs better than interpolated Kneser-Ney and modified Kneser-Ney n-gram LMs in terms of both perplexity and word error rate.\",\"PeriodicalId\":371729,\"journal\":{\"name\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2007.4430096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

本文研究了基于Pitman-Yor过程的层次贝叶斯语言模型(LM)在多人会议自动语音识别(ASR)中的应用。分层Pitman-Yor语言模型(HPY-LM)提供了对LM平滑的贝叶斯解释。对HPYLM的近似恢复了n-gram模型中插值Kneser-Ney平滑方法的精确公式。本文主要研究了HPYLM在一个实际的大词汇量ASR系统中的应用和可扩展性。在NIST RT06s评估会议数据上的实验结果验证了HPYLM是一种有竞争力和前景的语言建模技术,在困惑度和单词错误率方面,HPYLM始终优于内插的Kneser-Ney和修改的Kneser-Ney n-gram LMs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical Pitman-Yor language models for ASR in meetings
In this paper we investigate the application of a hierarchical Bayesian language model (LM) based on the Pitman-Yor process for automatic speech recognition (ASR) of multiparty meetings. The hierarchical Pitman-Yor language model (HPY-LM) provides a Bayesian interpretation of LM smoothing. An approximation to the HPYLM recovers the exact formulation of the interpolated Kneser-Ney smoothing method in n-gram models. This paper focuses on the application and scalability of HPYLM on a practical large vocabulary ASR system. Experimental results on NIST RT06s evaluation meeting data verify that HPYLM is a competitive and promising language modeling technique, which consistently performs better than interpolated Kneser-Ney and modified Kneser-Ney n-gram LMs in terms of both perplexity and word error rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive linear transforms for noise robust speech recognition Development of a phonetic system for large vocabulary Arabic speech recognition Error simulation for training statistical dialogue systems An enhanced minimum classification error learning framework for balancing insertion, deletion and substitution errors Monolingual and crosslingual comparison of tandem features derived from articulatory and phone MLPS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1