基于自适应正弦模型的情绪言语分析

George P. Kafentzis, Theodora Yakoumaki, A. Mouchtaris, Y. Stylianou
{"title":"基于自适应正弦模型的情绪言语分析","authors":"George P. Kafentzis, Theodora Yakoumaki, A. Mouchtaris, Y. Stylianou","doi":"10.5281/ZENODO.44181","DOIUrl":null,"url":null,"abstract":"Processing of emotional (or expressive) speech has gained attention over recent years in the speech community due to its numerous applications. In this paper, an adaptive sinusoidal model (aSM), dubbed extended adaptive Quasi-Harmonic Model - eaQHM, is employed to analyze emotional speech in accurate, robust, continuous, timevarying parameters (amplitude, frequency, and phase). It is shown that these parameters can adequately and accurately represent emotional speech content. Using a well known database of narrowband expressive speech (SUSAS) we show that very high Signal-to-Reconstruction-Error Ratio (SRER) values can be obtained, compared to the standard sinusoidal model (SM). Formal listening tests on a smaller wideband speech database show that the eaQHM outperforms SM from a perceptual resynthesis quality point of view. Finally, preliminary emotion classification tests show that the parameters obtained from the adaptive model lead to a higher classification score, compared to the standard SM parameters.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Analysis of emotional speech using an adaptive sinusoidal model\",\"authors\":\"George P. Kafentzis, Theodora Yakoumaki, A. Mouchtaris, Y. Stylianou\",\"doi\":\"10.5281/ZENODO.44181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Processing of emotional (or expressive) speech has gained attention over recent years in the speech community due to its numerous applications. In this paper, an adaptive sinusoidal model (aSM), dubbed extended adaptive Quasi-Harmonic Model - eaQHM, is employed to analyze emotional speech in accurate, robust, continuous, timevarying parameters (amplitude, frequency, and phase). It is shown that these parameters can adequately and accurately represent emotional speech content. Using a well known database of narrowband expressive speech (SUSAS) we show that very high Signal-to-Reconstruction-Error Ratio (SRER) values can be obtained, compared to the standard sinusoidal model (SM). Formal listening tests on a smaller wideband speech database show that the eaQHM outperforms SM from a perceptual resynthesis quality point of view. Finally, preliminary emotion classification tests show that the parameters obtained from the adaptive model lead to a higher classification score, compared to the standard SM parameters.\",\"PeriodicalId\":198408,\"journal\":{\"name\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.44181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.44181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

近年来,情绪(或表达)语音的处理由于其众多的应用而引起了语言界的关注。本文采用一种自适应正弦模型(aSM),即扩展自适应准谐波模型(eaQHM),对情绪语音进行精确、鲁棒、连续、时变的参数(幅度、频率和相位)分析。结果表明,这些参数能够充分、准确地表征情感语音的内容。使用一个著名的窄带表达语音(SUSAS)数据库,我们证明了与标准正弦模型(SM)相比,可以获得非常高的信号重建误差率(SRER)值。在较小的宽带语音数据库上进行的正式听力测试表明,从感知重合成质量的角度来看,eaQHM优于SM。最后,初步的情绪分类测试表明,与标准SM参数相比,自适应模型获得的参数导致更高的分类得分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of emotional speech using an adaptive sinusoidal model
Processing of emotional (or expressive) speech has gained attention over recent years in the speech community due to its numerous applications. In this paper, an adaptive sinusoidal model (aSM), dubbed extended adaptive Quasi-Harmonic Model - eaQHM, is employed to analyze emotional speech in accurate, robust, continuous, timevarying parameters (amplitude, frequency, and phase). It is shown that these parameters can adequately and accurately represent emotional speech content. Using a well known database of narrowband expressive speech (SUSAS) we show that very high Signal-to-Reconstruction-Error Ratio (SRER) values can be obtained, compared to the standard sinusoidal model (SM). Formal listening tests on a smaller wideband speech database show that the eaQHM outperforms SM from a perceptual resynthesis quality point of view. Finally, preliminary emotion classification tests show that the parameters obtained from the adaptive model lead to a higher classification score, compared to the standard SM parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An improved chirp group delay based algorithm for estimating the vocal tract response Bone microstructure reconstructions from few projections with stochastic nonlinear diffusion Adaptive waveform selection and target tracking by wideband multistatic radar/sonar systems Exploiting time and frequency information for Delay/Doppler altimetry Merging extremum seeking and self-optimizing narrowband interference canceller - overdetermined case
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1