Zheng Zhang, Hanhong Chen, J. Zhong, Ying Chen, Yicheng Lu
{"title":"基于ZnO纳米尖端的QCM生物传感器","authors":"Zheng Zhang, Hanhong Chen, J. Zhong, Ying Chen, Yicheng Lu","doi":"10.1109/FREQ.2006.275444","DOIUrl":null,"url":null,"abstract":"The medical diagnostics laboratories are showing an urgent need for accurate, fast and inexpensive biosensors. A zinc oxide (ZnO) nanotip-based quartz crystal microbalance (QCM) sensor is developed as a solution for accurate and inexpensive biosensors. The QCM sensor composed of single crystalline ZnO nanotips grown on top of a gold electrode using metal-organic chemical vapor deposition (MOCVD). Scanning electron microscopy (SEM) shows that the ZnO nanotips are uniformly aligned with their c-axis normal to the gold surface, giving a large surface area for sample up-taking. The ZnO nanotip coated QCM sensor shows a 10-time larger frequency shift than that of regular QCM sensors, when measuring the same DNA oligonucleotide (5'-AGAAAATCTTAGTGTC-3') solution. In addition, the hydrophilic behaviors of the nanotip array significantly reduce the required liquid volume for effective detection. 0.5 mul solution fully covers the QCM sensor area (0.2047 cm2), while a minimum of 16 mul liquid is required to cover a flat surface of the conventional QCM. ZnO nanotips show superhydrophilicity with a contact angle of ~0deg under ultraviolet (UV) illumination. The superhydrophilic sensor surface significantly boosts the solution taking up ability; therefore, enhances the sensitivity of the QCM sensor. The effects of ZnO nanostructure on the bulk acoustic wave (BAW) are also discussed","PeriodicalId":445945,"journal":{"name":"2006 IEEE International Frequency Control Symposium and Exposition","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"ZnO Nanotip-based QCM Biosensors\",\"authors\":\"Zheng Zhang, Hanhong Chen, J. Zhong, Ying Chen, Yicheng Lu\",\"doi\":\"10.1109/FREQ.2006.275444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The medical diagnostics laboratories are showing an urgent need for accurate, fast and inexpensive biosensors. A zinc oxide (ZnO) nanotip-based quartz crystal microbalance (QCM) sensor is developed as a solution for accurate and inexpensive biosensors. The QCM sensor composed of single crystalline ZnO nanotips grown on top of a gold electrode using metal-organic chemical vapor deposition (MOCVD). Scanning electron microscopy (SEM) shows that the ZnO nanotips are uniformly aligned with their c-axis normal to the gold surface, giving a large surface area for sample up-taking. The ZnO nanotip coated QCM sensor shows a 10-time larger frequency shift than that of regular QCM sensors, when measuring the same DNA oligonucleotide (5'-AGAAAATCTTAGTGTC-3') solution. In addition, the hydrophilic behaviors of the nanotip array significantly reduce the required liquid volume for effective detection. 0.5 mul solution fully covers the QCM sensor area (0.2047 cm2), while a minimum of 16 mul liquid is required to cover a flat surface of the conventional QCM. ZnO nanotips show superhydrophilicity with a contact angle of ~0deg under ultraviolet (UV) illumination. The superhydrophilic sensor surface significantly boosts the solution taking up ability; therefore, enhances the sensitivity of the QCM sensor. The effects of ZnO nanostructure on the bulk acoustic wave (BAW) are also discussed\",\"PeriodicalId\":445945,\"journal\":{\"name\":\"2006 IEEE International Frequency Control Symposium and Exposition\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Frequency Control Symposium and Exposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FREQ.2006.275444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Frequency Control Symposium and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FREQ.2006.275444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The medical diagnostics laboratories are showing an urgent need for accurate, fast and inexpensive biosensors. A zinc oxide (ZnO) nanotip-based quartz crystal microbalance (QCM) sensor is developed as a solution for accurate and inexpensive biosensors. The QCM sensor composed of single crystalline ZnO nanotips grown on top of a gold electrode using metal-organic chemical vapor deposition (MOCVD). Scanning electron microscopy (SEM) shows that the ZnO nanotips are uniformly aligned with their c-axis normal to the gold surface, giving a large surface area for sample up-taking. The ZnO nanotip coated QCM sensor shows a 10-time larger frequency shift than that of regular QCM sensors, when measuring the same DNA oligonucleotide (5'-AGAAAATCTTAGTGTC-3') solution. In addition, the hydrophilic behaviors of the nanotip array significantly reduce the required liquid volume for effective detection. 0.5 mul solution fully covers the QCM sensor area (0.2047 cm2), while a minimum of 16 mul liquid is required to cover a flat surface of the conventional QCM. ZnO nanotips show superhydrophilicity with a contact angle of ~0deg under ultraviolet (UV) illumination. The superhydrophilic sensor surface significantly boosts the solution taking up ability; therefore, enhances the sensitivity of the QCM sensor. The effects of ZnO nanostructure on the bulk acoustic wave (BAW) are also discussed