{"title":"将项目管理技术应用于破纪录的超深水前沿钻井作业","authors":"C. Nunes, V. Smith, A. Amer, Diogo Wink Tourinho","doi":"10.2118/191174-MS","DOIUrl":null,"url":null,"abstract":"\n This paper highlights the use of integrated project management techniques, as well as innovative drilling fluids technology, to safely achieve drilling objectives on a frontier exploratory, ultra-deepwater project offshore Uruguay. Drilling in a frontier offshore area adds layers of complexity due to inherent uncertainties and risks associated with these types of operations. The use of project management techniques, combined with application of novel drilling fluids technologies, served to mitigate and reduce project risks. Preparation for this well included regulatory review and HSE compliance procedures, facilities and logistics planning, the operator's understanding of the well complexities, selection of experts for each aspect of the operation, and contingency planning to include displacement and emergency disconnect. A thorough and comprehensive readiness review, coupled with communications processes, reinforced the project management loop. Critical path management and efficiencies of drilling operations dictated managing the logistics of mixing large volumes of drilling fluid at multiple locations. The well design program considered the possibility of encountering extreme sediment compaction arising from mass transport complexes (MTC) in the riserless interval. MTCs are a recognized geologic phenomenon and are typically avoided when drilling in deepwater areas of the world.1 The novelty of the workflow involved in safely and effectively delivering this record, frontier ultra-deepwater well included thorough planning and execution, in parallel with the use of new drilling fluid technology and facilities.","PeriodicalId":415543,"journal":{"name":"Day 2 Tue, June 26, 2018","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Applying Project Management Techniques to a Record-Breaking Ultra-Deepwater Frontier Drilling Operation\",\"authors\":\"C. Nunes, V. Smith, A. Amer, Diogo Wink Tourinho\",\"doi\":\"10.2118/191174-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper highlights the use of integrated project management techniques, as well as innovative drilling fluids technology, to safely achieve drilling objectives on a frontier exploratory, ultra-deepwater project offshore Uruguay. Drilling in a frontier offshore area adds layers of complexity due to inherent uncertainties and risks associated with these types of operations. The use of project management techniques, combined with application of novel drilling fluids technologies, served to mitigate and reduce project risks. Preparation for this well included regulatory review and HSE compliance procedures, facilities and logistics planning, the operator's understanding of the well complexities, selection of experts for each aspect of the operation, and contingency planning to include displacement and emergency disconnect. A thorough and comprehensive readiness review, coupled with communications processes, reinforced the project management loop. Critical path management and efficiencies of drilling operations dictated managing the logistics of mixing large volumes of drilling fluid at multiple locations. The well design program considered the possibility of encountering extreme sediment compaction arising from mass transport complexes (MTC) in the riserless interval. MTCs are a recognized geologic phenomenon and are typically avoided when drilling in deepwater areas of the world.1 The novelty of the workflow involved in safely and effectively delivering this record, frontier ultra-deepwater well included thorough planning and execution, in parallel with the use of new drilling fluid technology and facilities.\",\"PeriodicalId\":415543,\"journal\":{\"name\":\"Day 2 Tue, June 26, 2018\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, June 26, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/191174-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, June 26, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/191174-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Applying Project Management Techniques to a Record-Breaking Ultra-Deepwater Frontier Drilling Operation
This paper highlights the use of integrated project management techniques, as well as innovative drilling fluids technology, to safely achieve drilling objectives on a frontier exploratory, ultra-deepwater project offshore Uruguay. Drilling in a frontier offshore area adds layers of complexity due to inherent uncertainties and risks associated with these types of operations. The use of project management techniques, combined with application of novel drilling fluids technologies, served to mitigate and reduce project risks. Preparation for this well included regulatory review and HSE compliance procedures, facilities and logistics planning, the operator's understanding of the well complexities, selection of experts for each aspect of the operation, and contingency planning to include displacement and emergency disconnect. A thorough and comprehensive readiness review, coupled with communications processes, reinforced the project management loop. Critical path management and efficiencies of drilling operations dictated managing the logistics of mixing large volumes of drilling fluid at multiple locations. The well design program considered the possibility of encountering extreme sediment compaction arising from mass transport complexes (MTC) in the riserless interval. MTCs are a recognized geologic phenomenon and are typically avoided when drilling in deepwater areas of the world.1 The novelty of the workflow involved in safely and effectively delivering this record, frontier ultra-deepwater well included thorough planning and execution, in parallel with the use of new drilling fluid technology and facilities.