基于改进变分模型和奇异值分解的故障信号特征认知模型

IF 1.2 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Cognitive Computation and Systems Pub Date : 2020-05-22 DOI:10.1049/ccs.2020.0009
Jinxiang Chen, Zhu Zhu, Xiaoda Zhang
{"title":"基于改进变分模型和奇异值分解的故障信号特征认知模型","authors":"Jinxiang Chen,&nbsp;Zhu Zhu,&nbsp;Xiaoda Zhang","doi":"10.1049/ccs.2020.0009","DOIUrl":null,"url":null,"abstract":"<div>\n <p>A feature cognitive model combined with an improved variational mode and singular value decomposition is presented to recognise the characteristics of the fault signals from vibration signals of mechanical equipment in this study. Specifically, the variational mode model is constructed firstly to decompose the known fault signals for mechanical equipment with the same load. Singular value decomposition approach is applied to recognise further the inherent modal features of the fault signals and construct the feature set. The supervised learning-support vector machine and the unsupervised learning-fuzzy c-means clustering are used to verify the effectiveness of the presented method. Finally, the provided feature cognitive model is used to recognise the bearing faults to verify its effectiveness. From simulation results, it can be seen that compared to the complete integration empirical mode decomposition method, the feature cognitive model combined by an improved variational mode and singular value decomposition can obtain more higher accuracy and larger evaluation coefficients. It is worth mentioning that the presented method can also be applied to recognise the key characteristics of the other signals.</p>\n </div>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs.2020.0009","citationCount":"3","resultStr":"{\"title\":\"Feature cognitive model combined by an improved variational mode and singular value decomposition for fault signals\",\"authors\":\"Jinxiang Chen,&nbsp;Zhu Zhu,&nbsp;Xiaoda Zhang\",\"doi\":\"10.1049/ccs.2020.0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>A feature cognitive model combined with an improved variational mode and singular value decomposition is presented to recognise the characteristics of the fault signals from vibration signals of mechanical equipment in this study. Specifically, the variational mode model is constructed firstly to decompose the known fault signals for mechanical equipment with the same load. Singular value decomposition approach is applied to recognise further the inherent modal features of the fault signals and construct the feature set. The supervised learning-support vector machine and the unsupervised learning-fuzzy c-means clustering are used to verify the effectiveness of the presented method. Finally, the provided feature cognitive model is used to recognise the bearing faults to verify its effectiveness. From simulation results, it can be seen that compared to the complete integration empirical mode decomposition method, the feature cognitive model combined by an improved variational mode and singular value decomposition can obtain more higher accuracy and larger evaluation coefficients. It is worth mentioning that the presented method can also be applied to recognise the key characteristics of the other signals.</p>\\n </div>\",\"PeriodicalId\":33652,\"journal\":{\"name\":\"Cognitive Computation and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs.2020.0009\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Computation and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ccs.2020.0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation and Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ccs.2020.0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种结合改进变分模型和奇异值分解的特征认知模型,用于识别机械设备振动信号中的故障信号特征。具体而言,首先构建变分模态模型,对具有相同负荷的机械设备的已知故障信号进行分解;采用奇异值分解方法进一步识别故障信号固有的模态特征,构造特征集。采用监督学习-支持向量机和无监督学习-模糊c均值聚类来验证该方法的有效性。最后,将所提供的特征认知模型用于轴承故障识别,验证其有效性。从仿真结果可以看出,与完全积分经验模态分解方法相比,改进变分模态与奇异值分解相结合的特征认知模型可以获得更高的精度和更大的评价系数。值得一提的是,所提出的方法也可以应用于识别其他信号的关键特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature cognitive model combined by an improved variational mode and singular value decomposition for fault signals

A feature cognitive model combined with an improved variational mode and singular value decomposition is presented to recognise the characteristics of the fault signals from vibration signals of mechanical equipment in this study. Specifically, the variational mode model is constructed firstly to decompose the known fault signals for mechanical equipment with the same load. Singular value decomposition approach is applied to recognise further the inherent modal features of the fault signals and construct the feature set. The supervised learning-support vector machine and the unsupervised learning-fuzzy c-means clustering are used to verify the effectiveness of the presented method. Finally, the provided feature cognitive model is used to recognise the bearing faults to verify its effectiveness. From simulation results, it can be seen that compared to the complete integration empirical mode decomposition method, the feature cognitive model combined by an improved variational mode and singular value decomposition can obtain more higher accuracy and larger evaluation coefficients. It is worth mentioning that the presented method can also be applied to recognise the key characteristics of the other signals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Computation and Systems
Cognitive Computation and Systems Computer Science-Computer Science Applications
CiteScore
2.50
自引率
0.00%
发文量
39
审稿时长
10 weeks
期刊最新文献
EF-CorrCA: A multi-modal EEG-fNIRS subject independent model to assess speech quality on brain activity using correlated component analysis Detection of autism spectrum disorder using multi-scale enhanced graph convolutional network Evolving usability heuristics for visualising Augmented Reality/Mixed Reality applications using cognitive model of information processing and fuzzy analytical hierarchy process Emotion classification with multi-modal physiological signals using multi-attention-based neural network Optimisation of deep neural network model using Reptile meta learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1