Jamie W. Freiman , Yongbum Kim , Miklos A. Vasarhelyi
{"title":"全人口测试:将多维审计数据抽样(MADS)应用于总帐数据审计","authors":"Jamie W. Freiman , Yongbum Kim , Miklos A. Vasarhelyi","doi":"10.1016/j.accinf.2022.100573","DOIUrl":null,"url":null,"abstract":"<div><p>Changes to the General Ledger (GL) represent a link between transactional business events from Journal Entries and prepared financial statements. Errors in these very large datasets can result in material misstatements or account misbalance. Unfortunately, a plethora of conditions renders traditional statistical and non-statistical sampling less effective. As a full-population examination procedure, Multidimensional Audit Data Sampling (MADS) mitigates these issues. In conjunction with top practitioners, we utilize a design science approach in applying the full-population MADS methodology to a real dataset of GL account balance changes. Issues such as the effectiveness of internal controls, detection of low-frequency high-risk errors, and earnings management concerns are addressed. This paper demonstrates how vital insights can be gained using MADS. More importantly, this approach also highlights the exact portion of the population that is error-free with respect to the auditors' tests.</p></div>","PeriodicalId":47170,"journal":{"name":"International Journal of Accounting Information Systems","volume":"46 ","pages":"Article 100573"},"PeriodicalIF":4.1000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full population testing: Applying multidimensional audit data sampling (MADS) to general ledger data auditing\",\"authors\":\"Jamie W. Freiman , Yongbum Kim , Miklos A. Vasarhelyi\",\"doi\":\"10.1016/j.accinf.2022.100573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Changes to the General Ledger (GL) represent a link between transactional business events from Journal Entries and prepared financial statements. Errors in these very large datasets can result in material misstatements or account misbalance. Unfortunately, a plethora of conditions renders traditional statistical and non-statistical sampling less effective. As a full-population examination procedure, Multidimensional Audit Data Sampling (MADS) mitigates these issues. In conjunction with top practitioners, we utilize a design science approach in applying the full-population MADS methodology to a real dataset of GL account balance changes. Issues such as the effectiveness of internal controls, detection of low-frequency high-risk errors, and earnings management concerns are addressed. This paper demonstrates how vital insights can be gained using MADS. More importantly, this approach also highlights the exact portion of the population that is error-free with respect to the auditors' tests.</p></div>\",\"PeriodicalId\":47170,\"journal\":{\"name\":\"International Journal of Accounting Information Systems\",\"volume\":\"46 \",\"pages\":\"Article 100573\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Accounting Information Systems\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1467089522000252\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Accounting Information Systems","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1467089522000252","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS","Score":null,"Total":0}
Full population testing: Applying multidimensional audit data sampling (MADS) to general ledger data auditing
Changes to the General Ledger (GL) represent a link between transactional business events from Journal Entries and prepared financial statements. Errors in these very large datasets can result in material misstatements or account misbalance. Unfortunately, a plethora of conditions renders traditional statistical and non-statistical sampling less effective. As a full-population examination procedure, Multidimensional Audit Data Sampling (MADS) mitigates these issues. In conjunction with top practitioners, we utilize a design science approach in applying the full-population MADS methodology to a real dataset of GL account balance changes. Issues such as the effectiveness of internal controls, detection of low-frequency high-risk errors, and earnings management concerns are addressed. This paper demonstrates how vital insights can be gained using MADS. More importantly, this approach also highlights the exact portion of the population that is error-free with respect to the auditors' tests.
期刊介绍:
The International Journal of Accounting Information Systems will publish thoughtful, well developed articles that examine the rapidly evolving relationship between accounting and information technology. Articles may range from empirical to analytical, from practice-based to the development of new techniques, but must be related to problems facing the integration of accounting and information technology. The journal will address (but will not limit itself to) the following specific issues: control and auditability of information systems; management of information technology; artificial intelligence research in accounting; development issues in accounting and information systems; human factors issues related to information technology; development of theories related to information technology; methodological issues in information technology research; information systems validation; human–computer interaction research in accounting information systems. The journal welcomes and encourages articles from both practitioners and academicians.