近似动态规划和强化学习的自动基函数构造

Philipp W. Keller, Shie Mannor, Doina Precup
{"title":"近似动态规划和强化学习的自动基函数构造","authors":"Philipp W. Keller, Shie Mannor, Doina Precup","doi":"10.1145/1143844.1143901","DOIUrl":null,"url":null,"abstract":"We address the problem of automatically constructing basis functions for linear approximation of the value function of a Markov Decision Process (MDP). Our work builds on results by Bertsekas and Castañon (1989) who proposed a method for automatically aggregating states to speed up value iteration. We propose to use neighborhood component analysis (Goldberger et al., 2005), a dimensionality reduction technique created for supervised learning, in order to map a high-dimensional state space to a low-dimensional space, based on the Bellman error, or on the temporal difference (TD) error. We then place basis function in the lower-dimensional space. These are added as new features for the linear function approximator. This approach is applied to a high-dimensional inventory control problem.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"182","resultStr":"{\"title\":\"Automatic basis function construction for approximate dynamic programming and reinforcement learning\",\"authors\":\"Philipp W. Keller, Shie Mannor, Doina Precup\",\"doi\":\"10.1145/1143844.1143901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of automatically constructing basis functions for linear approximation of the value function of a Markov Decision Process (MDP). Our work builds on results by Bertsekas and Castañon (1989) who proposed a method for automatically aggregating states to speed up value iteration. We propose to use neighborhood component analysis (Goldberger et al., 2005), a dimensionality reduction technique created for supervised learning, in order to map a high-dimensional state space to a low-dimensional space, based on the Bellman error, or on the temporal difference (TD) error. We then place basis function in the lower-dimensional space. These are added as new features for the linear function approximator. This approach is applied to a high-dimensional inventory control problem.\",\"PeriodicalId\":124011,\"journal\":{\"name\":\"Proceedings of the 23rd international conference on Machine learning\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"182\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd international conference on Machine learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1143844.1143901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 182

摘要

研究了马尔可夫决策过程(MDP)值函数线性逼近的基函数自动构造问题。我们的工作建立在Bertsekas和Castañon(1989)的结果之上,他们提出了一种自动聚合状态以加速值迭代的方法。我们建议使用邻域成分分析(Goldberger et al., 2005),这是一种为监督学习创建的降维技术,以便基于Bellman误差或时间差(TD)误差将高维状态空间映射到低维空间。然后把基函数放在低维空间中。这些是作为线性函数逼近器的新特性添加的。该方法应用于一个高维库存控制问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic basis function construction for approximate dynamic programming and reinforcement learning
We address the problem of automatically constructing basis functions for linear approximation of the value function of a Markov Decision Process (MDP). Our work builds on results by Bertsekas and Castañon (1989) who proposed a method for automatically aggregating states to speed up value iteration. We propose to use neighborhood component analysis (Goldberger et al., 2005), a dimensionality reduction technique created for supervised learning, in order to map a high-dimensional state space to a low-dimensional space, based on the Bellman error, or on the temporal difference (TD) error. We then place basis function in the lower-dimensional space. These are added as new features for the linear function approximator. This approach is applied to a high-dimensional inventory control problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On a theory of learning with similarity functions Bayesian learning of measurement and structural models Predictive search distributions Data association for topic intensity tracking Feature value acquisition in testing: a sequential batch test algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1