{"title":"对数线性训练的收敛性分析及其在语音识别中的应用","authors":"Simon Wiesler, R. Schlüter, H. Ney","doi":"10.1109/ASRU.2011.6163895","DOIUrl":null,"url":null,"abstract":"Log-linear models are a promising approach for speech recognition. Typically, log-linear models are trained according to a strictly convex criterion. Optimization algorithms are guaranteed to converge to the unique global optimum of the objective function from any initialization. For large-scale applications, considerations in the limit of infinite iterations are not sufficient. We show that log-linear training can be a highly ill-conditioned optimization problem, resulting in extremely slow convergence. Conversely, the optimization problem can be preconditioned by feature transformations. Making use of our convergence analysis, we improve our log-linear speech recognition system and achieve a strong reduction of its training time. In addition, we validate our analysis on a continuous handwriting recognition task.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A convergence analysis of log-linear training and its application to speech recognition\",\"authors\":\"Simon Wiesler, R. Schlüter, H. Ney\",\"doi\":\"10.1109/ASRU.2011.6163895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Log-linear models are a promising approach for speech recognition. Typically, log-linear models are trained according to a strictly convex criterion. Optimization algorithms are guaranteed to converge to the unique global optimum of the objective function from any initialization. For large-scale applications, considerations in the limit of infinite iterations are not sufficient. We show that log-linear training can be a highly ill-conditioned optimization problem, resulting in extremely slow convergence. Conversely, the optimization problem can be preconditioned by feature transformations. Making use of our convergence analysis, we improve our log-linear speech recognition system and achieve a strong reduction of its training time. In addition, we validate our analysis on a continuous handwriting recognition task.\",\"PeriodicalId\":338241,\"journal\":{\"name\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2011.6163895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A convergence analysis of log-linear training and its application to speech recognition
Log-linear models are a promising approach for speech recognition. Typically, log-linear models are trained according to a strictly convex criterion. Optimization algorithms are guaranteed to converge to the unique global optimum of the objective function from any initialization. For large-scale applications, considerations in the limit of infinite iterations are not sufficient. We show that log-linear training can be a highly ill-conditioned optimization problem, resulting in extremely slow convergence. Conversely, the optimization problem can be preconditioned by feature transformations. Making use of our convergence analysis, we improve our log-linear speech recognition system and achieve a strong reduction of its training time. In addition, we validate our analysis on a continuous handwriting recognition task.