{"title":"基于SVR模型的Fugl-Meyer自动评估","authors":"Jingli Wang, Lei Yu, Jiping Wang, Liquan Guo, X. Gu, Qiang Fang","doi":"10.1109/ISBB.2014.6820907","DOIUrl":null,"url":null,"abstract":"A simple, objective and quantitative unsupervised outcome measure is considered vital in the home-based rehabilitation for stroke patients. The Fugl-Meyer Assessment (FMA) scale is widely utilized in the clinical practice, while not suitable in the home settings due to its subjective and time-consuming property. In this paper, a Support Vector Regression (SVR) based evaluation model was presented to automatically estimate the FMA scores for Shoulder-Elbow movement. The estimation was obtained by analyzing accelerometer data recorded during the performance of 4 tasks from Shoulder-Elbow FMA. A combined feature selection method based on ReliefF-SVR was implemented to simplify the calculation and improve the model performance. Twenty-four subjects were involved in this study and results showed that it was possible to achieve accurate estimation of Shoulder-Elbow FMA scores using the proposed model and a cross-validation prediction error value of 2.1273 was achieved.","PeriodicalId":265886,"journal":{"name":"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Automated Fugl-Meyer Assessment using SVR model\",\"authors\":\"Jingli Wang, Lei Yu, Jiping Wang, Liquan Guo, X. Gu, Qiang Fang\",\"doi\":\"10.1109/ISBB.2014.6820907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple, objective and quantitative unsupervised outcome measure is considered vital in the home-based rehabilitation for stroke patients. The Fugl-Meyer Assessment (FMA) scale is widely utilized in the clinical practice, while not suitable in the home settings due to its subjective and time-consuming property. In this paper, a Support Vector Regression (SVR) based evaluation model was presented to automatically estimate the FMA scores for Shoulder-Elbow movement. The estimation was obtained by analyzing accelerometer data recorded during the performance of 4 tasks from Shoulder-Elbow FMA. A combined feature selection method based on ReliefF-SVR was implemented to simplify the calculation and improve the model performance. Twenty-four subjects were involved in this study and results showed that it was possible to achieve accurate estimation of Shoulder-Elbow FMA scores using the proposed model and a cross-validation prediction error value of 2.1273 was achieved.\",\"PeriodicalId\":265886,\"journal\":{\"name\":\"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBB.2014.6820907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBB.2014.6820907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A simple, objective and quantitative unsupervised outcome measure is considered vital in the home-based rehabilitation for stroke patients. The Fugl-Meyer Assessment (FMA) scale is widely utilized in the clinical practice, while not suitable in the home settings due to its subjective and time-consuming property. In this paper, a Support Vector Regression (SVR) based evaluation model was presented to automatically estimate the FMA scores for Shoulder-Elbow movement. The estimation was obtained by analyzing accelerometer data recorded during the performance of 4 tasks from Shoulder-Elbow FMA. A combined feature selection method based on ReliefF-SVR was implemented to simplify the calculation and improve the model performance. Twenty-four subjects were involved in this study and results showed that it was possible to achieve accurate estimation of Shoulder-Elbow FMA scores using the proposed model and a cross-validation prediction error value of 2.1273 was achieved.