基于行为、材料和组件的专利数据库结构表示支持类比灵感探索的方法

H. Song, Katherine K. Fu
{"title":"基于行为、材料和组件的专利数据库结构表示支持类比灵感探索的方法","authors":"H. Song, Katherine K. Fu","doi":"10.1115/DETC2018-85591","DOIUrl":null,"url":null,"abstract":"This paper presents an explorative-based computational methodology to aid the analogical retrieval process in design-by-analogy practice. The computational methodology, driven by Non-negative Matrix Factorization (NMF), iteratively builds a hierarchical repositories of design solutions within which clusters of design analogies can be explored by designers. In the work, the methodology has been applied on a large repository of mechanical design related patents, processed to contain only component-, behavior-, or material-based content, to demonstrate that unique and valuable attribute-based analogical inspiration can be discovered from different representations of patent data. For explorative purposes, the hierarchical repositories have been visualized with a three-dimensional hierarchical structure and two-dimensional bar graph structure, which can be used interchangeably for retrieving analogies. This paper demonstrates that the explorative-based computational methodology provides designers an enhanced control over design repositories, empowering them to retrieve analogical inspiration for design-by-analogy practice.","PeriodicalId":138856,"journal":{"name":"Volume 2A: 44th Design Automation Conference","volume":"435 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Approaches for Supporting Exploration for Analogical Inspiration With Behavior, Material and Component Based Structural Representations of Patent Databases\",\"authors\":\"H. Song, Katherine K. Fu\",\"doi\":\"10.1115/DETC2018-85591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an explorative-based computational methodology to aid the analogical retrieval process in design-by-analogy practice. The computational methodology, driven by Non-negative Matrix Factorization (NMF), iteratively builds a hierarchical repositories of design solutions within which clusters of design analogies can be explored by designers. In the work, the methodology has been applied on a large repository of mechanical design related patents, processed to contain only component-, behavior-, or material-based content, to demonstrate that unique and valuable attribute-based analogical inspiration can be discovered from different representations of patent data. For explorative purposes, the hierarchical repositories have been visualized with a three-dimensional hierarchical structure and two-dimensional bar graph structure, which can be used interchangeably for retrieving analogies. This paper demonstrates that the explorative-based computational methodology provides designers an enhanced control over design repositories, empowering them to retrieve analogical inspiration for design-by-analogy practice.\",\"PeriodicalId\":138856,\"journal\":{\"name\":\"Volume 2A: 44th Design Automation Conference\",\"volume\":\"435 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2A: 44th Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/DETC2018-85591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: 44th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-85591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于探索性的计算方法,以帮助类比设计实践中的类比检索过程。由非负矩阵分解(NMF)驱动的计算方法,迭代地构建设计解决方案的分层存储库,其中设计类比集群可以由设计师探索。在工作中,该方法已应用于机械设计相关专利的大型存储库,处理后仅包含基于组件、行为或材料的内容,以证明可以从专利数据的不同表示中发现独特且有价值的基于属性的类比灵感。出于探索的目的,分层存储库已被可视化为三维分层结构和二维条形图结构,这两种结构可互换用于检索类比。本文证明了基于探索的计算方法为设计师提供了对设计库的增强控制,使他们能够为类比设计实践检索类比灵感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approaches for Supporting Exploration for Analogical Inspiration With Behavior, Material and Component Based Structural Representations of Patent Databases
This paper presents an explorative-based computational methodology to aid the analogical retrieval process in design-by-analogy practice. The computational methodology, driven by Non-negative Matrix Factorization (NMF), iteratively builds a hierarchical repositories of design solutions within which clusters of design analogies can be explored by designers. In the work, the methodology has been applied on a large repository of mechanical design related patents, processed to contain only component-, behavior-, or material-based content, to demonstrate that unique and valuable attribute-based analogical inspiration can be discovered from different representations of patent data. For explorative purposes, the hierarchical repositories have been visualized with a three-dimensional hierarchical structure and two-dimensional bar graph structure, which can be used interchangeably for retrieving analogies. This paper demonstrates that the explorative-based computational methodology provides designers an enhanced control over design repositories, empowering them to retrieve analogical inspiration for design-by-analogy practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Electricity Grid As an Agent-Based Market System: Exploring the Effects of Policy on Sustainability Ontology-Based Unified Representation of Dynamic Simulation Models in Engineering Design Reducing Evaluation Cost for Circuit Synthesis Using Active Learning Computational Design of a Personalized Artificial Spinal Disc for Additive Manufacturing With Physiological Rotational Motions Short-Term Load Forecasting With Different Aggregation Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1