{"title":"基于非均匀矩形分割和生成对抗网络的多焦点图像融合算法","authors":"Xinxin Hong, U. KinTak","doi":"10.1109/ICWAPR48189.2019.8946467","DOIUrl":null,"url":null,"abstract":"Based on Non-uniform Rectangular Partition (NURP) and Generative Adversarial Network (GAN), this paper proposes an effective multi-focus image fusion method to generate a full-focus image by combining multi-focus images. Firstly, NURP is applied to left-focus and right-focus images, the size of partitioning grids obtained can be used to judge the fusion pixel to form a rough Fusion Guiding Map (FGM) which will be further optimized by morphological operation and manual adjustment to form an optimized FGM. Then the rough FGM and optimized FGM become the training dataset for the pix2pix GAN. After finishing the training, the trained pix2pix model can be used to optimize any rough FGM from NURP. Finally, the fused pixels are determined according to the FGM to construct the final fused image. The experimental results show that the algorithm improves the visual clarity of the fused image by enhancing the spatial detail of the image and obtains better objective evaluation indicators.","PeriodicalId":436840,"journal":{"name":"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-Focus Image Fusion Algorithm Based on Non-Uniform Rectangular Partition and Generative Adversarial Network\",\"authors\":\"Xinxin Hong, U. KinTak\",\"doi\":\"10.1109/ICWAPR48189.2019.8946467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on Non-uniform Rectangular Partition (NURP) and Generative Adversarial Network (GAN), this paper proposes an effective multi-focus image fusion method to generate a full-focus image by combining multi-focus images. Firstly, NURP is applied to left-focus and right-focus images, the size of partitioning grids obtained can be used to judge the fusion pixel to form a rough Fusion Guiding Map (FGM) which will be further optimized by morphological operation and manual adjustment to form an optimized FGM. Then the rough FGM and optimized FGM become the training dataset for the pix2pix GAN. After finishing the training, the trained pix2pix model can be used to optimize any rough FGM from NURP. Finally, the fused pixels are determined according to the FGM to construct the final fused image. The experimental results show that the algorithm improves the visual clarity of the fused image by enhancing the spatial detail of the image and obtains better objective evaluation indicators.\",\"PeriodicalId\":436840,\"journal\":{\"name\":\"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR48189.2019.8946467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR48189.2019.8946467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Focus Image Fusion Algorithm Based on Non-Uniform Rectangular Partition and Generative Adversarial Network
Based on Non-uniform Rectangular Partition (NURP) and Generative Adversarial Network (GAN), this paper proposes an effective multi-focus image fusion method to generate a full-focus image by combining multi-focus images. Firstly, NURP is applied to left-focus and right-focus images, the size of partitioning grids obtained can be used to judge the fusion pixel to form a rough Fusion Guiding Map (FGM) which will be further optimized by morphological operation and manual adjustment to form an optimized FGM. Then the rough FGM and optimized FGM become the training dataset for the pix2pix GAN. After finishing the training, the trained pix2pix model can be used to optimize any rough FGM from NURP. Finally, the fused pixels are determined according to the FGM to construct the final fused image. The experimental results show that the algorithm improves the visual clarity of the fused image by enhancing the spatial detail of the image and obtains better objective evaluation indicators.