基于非均匀矩形分割和生成对抗网络的多焦点图像融合算法

Xinxin Hong, U. KinTak
{"title":"基于非均匀矩形分割和生成对抗网络的多焦点图像融合算法","authors":"Xinxin Hong, U. KinTak","doi":"10.1109/ICWAPR48189.2019.8946467","DOIUrl":null,"url":null,"abstract":"Based on Non-uniform Rectangular Partition (NURP) and Generative Adversarial Network (GAN), this paper proposes an effective multi-focus image fusion method to generate a full-focus image by combining multi-focus images. Firstly, NURP is applied to left-focus and right-focus images, the size of partitioning grids obtained can be used to judge the fusion pixel to form a rough Fusion Guiding Map (FGM) which will be further optimized by morphological operation and manual adjustment to form an optimized FGM. Then the rough FGM and optimized FGM become the training dataset for the pix2pix GAN. After finishing the training, the trained pix2pix model can be used to optimize any rough FGM from NURP. Finally, the fused pixels are determined according to the FGM to construct the final fused image. The experimental results show that the algorithm improves the visual clarity of the fused image by enhancing the spatial detail of the image and obtains better objective evaluation indicators.","PeriodicalId":436840,"journal":{"name":"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-Focus Image Fusion Algorithm Based on Non-Uniform Rectangular Partition and Generative Adversarial Network\",\"authors\":\"Xinxin Hong, U. KinTak\",\"doi\":\"10.1109/ICWAPR48189.2019.8946467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on Non-uniform Rectangular Partition (NURP) and Generative Adversarial Network (GAN), this paper proposes an effective multi-focus image fusion method to generate a full-focus image by combining multi-focus images. Firstly, NURP is applied to left-focus and right-focus images, the size of partitioning grids obtained can be used to judge the fusion pixel to form a rough Fusion Guiding Map (FGM) which will be further optimized by morphological operation and manual adjustment to form an optimized FGM. Then the rough FGM and optimized FGM become the training dataset for the pix2pix GAN. After finishing the training, the trained pix2pix model can be used to optimize any rough FGM from NURP. Finally, the fused pixels are determined according to the FGM to construct the final fused image. The experimental results show that the algorithm improves the visual clarity of the fused image by enhancing the spatial detail of the image and obtains better objective evaluation indicators.\",\"PeriodicalId\":436840,\"journal\":{\"name\":\"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR48189.2019.8946467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR48189.2019.8946467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于非均匀矩形分割(NURP)和生成对抗网络(GAN),提出了一种有效的多焦点图像融合方法,将多焦点图像组合在一起生成全焦点图像。首先,将NURP应用于左焦和右焦图像,得到的分区网格大小可以用来判断融合像素,形成一个粗略的融合引导图(FGM),然后通过形态学操作和人工调整进一步优化,形成一个优化的FGM。然后将粗糙FGM和优化FGM作为pix2pix GAN的训练数据集。训练完成后,可以使用训练好的pix2pix模型对NURP中的任意粗糙FGM进行优化。最后,根据FGM确定融合像素,构建最终的融合图像。实验结果表明,该算法通过增强图像的空间细节,提高了融合图像的视觉清晰度,获得了更好的客观评价指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Focus Image Fusion Algorithm Based on Non-Uniform Rectangular Partition and Generative Adversarial Network
Based on Non-uniform Rectangular Partition (NURP) and Generative Adversarial Network (GAN), this paper proposes an effective multi-focus image fusion method to generate a full-focus image by combining multi-focus images. Firstly, NURP is applied to left-focus and right-focus images, the size of partitioning grids obtained can be used to judge the fusion pixel to form a rough Fusion Guiding Map (FGM) which will be further optimized by morphological operation and manual adjustment to form an optimized FGM. Then the rough FGM and optimized FGM become the training dataset for the pix2pix GAN. After finishing the training, the trained pix2pix model can be used to optimize any rough FGM from NURP. Finally, the fused pixels are determined according to the FGM to construct the final fused image. The experimental results show that the algorithm improves the visual clarity of the fused image by enhancing the spatial detail of the image and obtains better objective evaluation indicators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of Early Esophageal Cancer from Endoscopic Images Based on a Haar Wavelet Feature A Study on Development of Wavelet Deep Learning ICWAPR 2019 Greetings from the General Chairs A Novel Image Zero-Watermarking Scheme Based on Non-Uniform Triangular Partition Data Generation Method Based on Correlation Between Sensors in Photovoltaic Arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1