导体表面空间电荷分布对电离场计算的影响

Donglai Wang, T. Lu, Qinyuan Li, Bo Chen, Li Xie
{"title":"导体表面空间电荷分布对电离场计算的影响","authors":"Donglai Wang, T. Lu, Qinyuan Li, Bo Chen, Li Xie","doi":"10.1109/APPEEC.2016.7779591","DOIUrl":null,"url":null,"abstract":"Space charge density around the conductor surface is a boundary condition in the ionized field computation of HVDC transmission lines. Upstream finite element method is a common method to study ionized field problem. In this method, the distribution regularity of space charges around the conductor surface needs to be determined before computation. The difference of distribution assumptions will cause different results. In this paper, three distribution assumptions of space charges around conductor surface in ionized field computation are summed up. The effect of these assumptions is evaluated by a reduced-scale experiment in the laboratory. Finally, computation results of -800kV unipolar and ±800kV bipolar equivalent single transmission lines are discussed, and the percentage of relative error is given.","PeriodicalId":117485,"journal":{"name":"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of space charge distribution around the conductor surface on ionized field computation\",\"authors\":\"Donglai Wang, T. Lu, Qinyuan Li, Bo Chen, Li Xie\",\"doi\":\"10.1109/APPEEC.2016.7779591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Space charge density around the conductor surface is a boundary condition in the ionized field computation of HVDC transmission lines. Upstream finite element method is a common method to study ionized field problem. In this method, the distribution regularity of space charges around the conductor surface needs to be determined before computation. The difference of distribution assumptions will cause different results. In this paper, three distribution assumptions of space charges around conductor surface in ionized field computation are summed up. The effect of these assumptions is evaluated by a reduced-scale experiment in the laboratory. Finally, computation results of -800kV unipolar and ±800kV bipolar equivalent single transmission lines are discussed, and the percentage of relative error is given.\",\"PeriodicalId\":117485,\"journal\":{\"name\":\"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APPEEC.2016.7779591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2016.7779591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导体表面空间电荷密度是高压直流输电线路电离场计算中的一个边界条件。上游有限元法是研究电离场问题的常用方法。在这种方法中,需要在计算前确定导体表面周围空间电荷的分布规律。分布假设的不同会导致不同的结果。本文总结了电离场计算中导体表面空间电荷的三种分布假设。这些假设的影响是通过实验室缩小规模的实验来评估的。最后讨论了-800kV单极和±800kV双极等效单线的计算结果,并给出了相对误差百分比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of space charge distribution around the conductor surface on ionized field computation
Space charge density around the conductor surface is a boundary condition in the ionized field computation of HVDC transmission lines. Upstream finite element method is a common method to study ionized field problem. In this method, the distribution regularity of space charges around the conductor surface needs to be determined before computation. The difference of distribution assumptions will cause different results. In this paper, three distribution assumptions of space charges around conductor surface in ionized field computation are summed up. The effect of these assumptions is evaluated by a reduced-scale experiment in the laboratory. Finally, computation results of -800kV unipolar and ±800kV bipolar equivalent single transmission lines are discussed, and the percentage of relative error is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electric Vehicle charging management algorithm for a UK low-voltage residential distribution network An optimization model of EVs charging and discharging for power system demand leveling A circuit approach for the propagation analysis of voltage unbalance emission in power systems A novel high-power AC/AC modular multilevel converter in Y configuration and its control strategy Comprehensive optimization for power system with multiple HVDC infeed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1