LoRa Wan物联网异常检测的机器学习模型

Agus Kurniawan, M. Kyas
{"title":"LoRa Wan物联网异常检测的机器学习模型","authors":"Agus Kurniawan, M. Kyas","doi":"10.1109/ICACSIS56558.2022.9923439","DOIUrl":null,"url":null,"abstract":"LoRaWAN provides a long-range communication among IoT devices. Since a LoRaWAN gateway becomes a bridge between LoRaWAN nodes and back-end server, it could has potential security risks. We present an anomaly detection system to secure LoRa Wangateway devices by evaluating incoming packet data. To evaluate our proposed system, we build machine learning models using various outlier detection algorithms. We construct and evaluate LoRaWAN dataset from LoRaWAN gateway devices. The simulation and experimental results show that machine learning to address anomaly detection on constrained LoRa Wandevices guarantees feasibility, accu-racy and performance.","PeriodicalId":165728,"journal":{"name":"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Models for LoRa Wan IoT Anomaly Detection\",\"authors\":\"Agus Kurniawan, M. Kyas\",\"doi\":\"10.1109/ICACSIS56558.2022.9923439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LoRaWAN provides a long-range communication among IoT devices. Since a LoRaWAN gateway becomes a bridge between LoRaWAN nodes and back-end server, it could has potential security risks. We present an anomaly detection system to secure LoRa Wangateway devices by evaluating incoming packet data. To evaluate our proposed system, we build machine learning models using various outlier detection algorithms. We construct and evaluate LoRaWAN dataset from LoRaWAN gateway devices. The simulation and experimental results show that machine learning to address anomaly detection on constrained LoRa Wandevices guarantees feasibility, accu-racy and performance.\",\"PeriodicalId\":165728,\"journal\":{\"name\":\"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS56558.2022.9923439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS56558.2022.9923439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

LoRaWAN提供物联网设备之间的远程通信。由于LoRaWAN网关是连接LoRaWAN节点和后端服务器的桥梁,存在潜在的安全风险。我们提出了一个异常检测系统,通过评估传入的数据包数据来保护LoRa wanggateway设备。为了评估我们提出的系统,我们使用各种离群值检测算法构建机器学习模型。我们从LoRaWAN网关设备构建和评估LoRaWAN数据集。仿真和实验结果表明,机器学习解决受限LoRa wandevice上异常检测的可行性、准确性和性能都得到了保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Models for LoRa Wan IoT Anomaly Detection
LoRaWAN provides a long-range communication among IoT devices. Since a LoRaWAN gateway becomes a bridge between LoRaWAN nodes and back-end server, it could has potential security risks. We present an anomaly detection system to secure LoRa Wangateway devices by evaluating incoming packet data. To evaluate our proposed system, we build machine learning models using various outlier detection algorithms. We construct and evaluate LoRaWAN dataset from LoRaWAN gateway devices. The simulation and experimental results show that machine learning to address anomaly detection on constrained LoRa Wandevices guarantees feasibility, accu-racy and performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determining An Optimal Airport Location For Country Capital Case Study: Capital Region Nusantara Clustered Bert Model for predicting Retweet Popularity Placement Analysis ofGCI Radar For Supporting Indonesia Air Defense Using Geographic Information System (Case Study: West Kalimantan) Improved Single Shot Detector with Enhanced Hard Negative Mining Approach Classification of Stroke and Non-Stroke Patients from Human Body Movements using Smartphone Videos and Deep Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1