基于人工神经网络的核电站智能控制

B. Hwang
{"title":"基于人工神经网络的核电站智能控制","authors":"B. Hwang","doi":"10.1109/ICNN.1994.374627","DOIUrl":null,"url":null,"abstract":"In this paper, an approach based on neural networks for the control system design of a pressurized water reactor (PWR) is presented. A reference model which incorporates a static projective suboptimal control law under various operating conditions is used to generate the necessary data for training the neurocontroller. The designed approach is able to control the nuclear reactor in a robust manner. Simulation results presented reveal that it is feasible to use artificial neural networks to improve the operating characteristics of the nuclear power plants.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Intelligent control for a nuclear power plant using artificial neural networks\",\"authors\":\"B. Hwang\",\"doi\":\"10.1109/ICNN.1994.374627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an approach based on neural networks for the control system design of a pressurized water reactor (PWR) is presented. A reference model which incorporates a static projective suboptimal control law under various operating conditions is used to generate the necessary data for training the neurocontroller. The designed approach is able to control the nuclear reactor in a robust manner. Simulation results presented reveal that it is feasible to use artificial neural networks to improve the operating characteristics of the nuclear power plants.<<ETX>>\",\"PeriodicalId\":209128,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1994.374627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种基于神经网络的压水堆控制系统设计方法。采用包含静态投影次优控制律的参考模型生成训练神经控制器所需的数据。所设计的方法能够以稳健的方式控制核反应堆。仿真结果表明,利用人工神经网络改善核电站运行特性是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent control for a nuclear power plant using artificial neural networks
In this paper, an approach based on neural networks for the control system design of a pressurized water reactor (PWR) is presented. A reference model which incorporates a static projective suboptimal control law under various operating conditions is used to generate the necessary data for training the neurocontroller. The designed approach is able to control the nuclear reactor in a robust manner. Simulation results presented reveal that it is feasible to use artificial neural networks to improve the operating characteristics of the nuclear power plants.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1