以北大西洋涛动为例的时变集合数据集时空趋势的可视化分析

Dominik Vietinghoff, Christian Heine, M. Böttinger, N. Maher, J. Jungclaus, G. Scheuermann
{"title":"以北大西洋涛动为例的时变集合数据集时空趋势的可视化分析","authors":"Dominik Vietinghoff, Christian Heine, M. Böttinger, N. Maher, J. Jungclaus, G. Scheuermann","doi":"10.1109/PacificVis52677.2021.00017","DOIUrl":null,"url":null,"abstract":"A driving factor of the winter weather in Western Europe is the North Atlantic Oscillation (NAO), manifested by fluctuations in the difference of sea level pressure between the Icelandic Low and the Azores High. Different methods have been developed that describe the strength of this oscillation, but they rely on certain assumptions, e.g., fixed positions of these two pressure systems. It is possible that climate change affects the mean location of both the Low and the High and thus the validity of these descriptive methods. This study is the first to visually analyze large ensemble climate change simulations (the MPI Grand Ensemble) to robustly assess shifts of the drivers of the NAO phenomenon using the uncertain northern hemispheric surface pressure fields. For this, we use a sliding window approach and compute empirical orthogonal functions (EOFs) for each window and ensemble member, then compare the uncertainty of local extrema in the results as well as their temporal evolution across different CO2 scenarios. We find systematic northeastward shifts in the location of the pressure systems that correlate with the simulated warming. Applying visualization techniques for this analysis was not straightforward; we reflect and give some lessons learned for the field of visualization.","PeriodicalId":199565,"journal":{"name":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Visual Analysis of Spatio-Temporal Trends in Time-Dependent Ensemble Data Sets on the Example of the North Atlantic Oscillation\",\"authors\":\"Dominik Vietinghoff, Christian Heine, M. Böttinger, N. Maher, J. Jungclaus, G. Scheuermann\",\"doi\":\"10.1109/PacificVis52677.2021.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A driving factor of the winter weather in Western Europe is the North Atlantic Oscillation (NAO), manifested by fluctuations in the difference of sea level pressure between the Icelandic Low and the Azores High. Different methods have been developed that describe the strength of this oscillation, but they rely on certain assumptions, e.g., fixed positions of these two pressure systems. It is possible that climate change affects the mean location of both the Low and the High and thus the validity of these descriptive methods. This study is the first to visually analyze large ensemble climate change simulations (the MPI Grand Ensemble) to robustly assess shifts of the drivers of the NAO phenomenon using the uncertain northern hemispheric surface pressure fields. For this, we use a sliding window approach and compute empirical orthogonal functions (EOFs) for each window and ensemble member, then compare the uncertainty of local extrema in the results as well as their temporal evolution across different CO2 scenarios. We find systematic northeastward shifts in the location of the pressure systems that correlate with the simulated warming. Applying visualization techniques for this analysis was not straightforward; we reflect and give some lessons learned for the field of visualization.\",\"PeriodicalId\":199565,\"journal\":{\"name\":\"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PacificVis52677.2021.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis52677.2021.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

北大西洋涛动(NAO)是西欧冬季天气的一个驱动因素,表现为冰岛低压和亚速尔高压之间海平面气压差的波动。已经发展出了不同的方法来描述这种振荡的强度,但它们依赖于某些假设,例如,这两个压力系统的固定位置。气候变化有可能影响低潮和高潮的平均位置,从而影响这些描述性方法的有效性。本研究首次利用不确定的北半球表面压力场对大集合气候变化模拟(MPI大集合)进行可视化分析,以可靠地评估NAO现象驱动因素的变化。为此,我们使用滑动窗口方法并计算每个窗口和集合成员的经验正交函数(EOFs),然后比较结果中的局部极值的不确定性及其在不同CO2情景下的时间演变。我们发现与模拟变暖相关的压力系统的位置有系统地向东北移动。应用可视化技术进行分析并不简单;我们反思并给出了可视化领域的一些经验教训。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual Analysis of Spatio-Temporal Trends in Time-Dependent Ensemble Data Sets on the Example of the North Atlantic Oscillation
A driving factor of the winter weather in Western Europe is the North Atlantic Oscillation (NAO), manifested by fluctuations in the difference of sea level pressure between the Icelandic Low and the Azores High. Different methods have been developed that describe the strength of this oscillation, but they rely on certain assumptions, e.g., fixed positions of these two pressure systems. It is possible that climate change affects the mean location of both the Low and the High and thus the validity of these descriptive methods. This study is the first to visually analyze large ensemble climate change simulations (the MPI Grand Ensemble) to robustly assess shifts of the drivers of the NAO phenomenon using the uncertain northern hemispheric surface pressure fields. For this, we use a sliding window approach and compute empirical orthogonal functions (EOFs) for each window and ensemble member, then compare the uncertainty of local extrema in the results as well as their temporal evolution across different CO2 scenarios. We find systematic northeastward shifts in the location of the pressure systems that correlate with the simulated warming. Applying visualization techniques for this analysis was not straightforward; we reflect and give some lessons learned for the field of visualization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADVISor: Automatic Visualization Answer for Natural-Language Question on Tabular Data An Extension of Empirical Orthogonal Functions for the Analysis of Time-Dependent 2D Scalar Field Ensembles Know-What and Know-Who: Document Searching and Exploration using Topic-Based Two-Mode Networks Louvain-based Multi-level Graph Drawing A Visual Analytics Approach for the Diagnosis of Heterogeneous and Multidimensional Machine Maintenance Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1