图像分析分类中的聚类划分:一种遗传算法方法

C. Alippi, R. Cucchiara
{"title":"图像分析分类中的聚类划分:一种遗传算法方法","authors":"C. Alippi, R. Cucchiara","doi":"10.1109/CMPEUR.1992.218520","DOIUrl":null,"url":null,"abstract":"A classification of data by using the genetic algorithm computational paradigm is proposed. The best data partition is defined to be the one minimizing the sum of Pythagorean distances between each datum in a cluster and the relative center of class or center of mass. Background is given, and the relevant genetic algorithm description is provided. The model for the genetic application is presented. Simulation results confirm genetic algorithms to be powerful tools for the solution of optimization problems.<<ETX>>","PeriodicalId":390273,"journal":{"name":"CompEuro 1992 Proceedings Computer Systems and Software Engineering","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Cluster partitioning in image analysis classification: a genetic algorithm approach\",\"authors\":\"C. Alippi, R. Cucchiara\",\"doi\":\"10.1109/CMPEUR.1992.218520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A classification of data by using the genetic algorithm computational paradigm is proposed. The best data partition is defined to be the one minimizing the sum of Pythagorean distances between each datum in a cluster and the relative center of class or center of mass. Background is given, and the relevant genetic algorithm description is provided. The model for the genetic application is presented. Simulation results confirm genetic algorithms to be powerful tools for the solution of optimization problems.<<ETX>>\",\"PeriodicalId\":390273,\"journal\":{\"name\":\"CompEuro 1992 Proceedings Computer Systems and Software Engineering\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CompEuro 1992 Proceedings Computer Systems and Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMPEUR.1992.218520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CompEuro 1992 Proceedings Computer Systems and Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMPEUR.1992.218520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

提出了一种基于遗传算法的数据分类方法。最佳数据分区被定义为最小化集群中每个基准与相对类中心或质量中心之间的毕达哥拉斯距离之和。给出了研究背景,并给出了相关的遗传算法描述。提出了遗传应用的模型。仿真结果证实了遗传算法是求解优化问题的有力工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cluster partitioning in image analysis classification: a genetic algorithm approach
A classification of data by using the genetic algorithm computational paradigm is proposed. The best data partition is defined to be the one minimizing the sum of Pythagorean distances between each datum in a cluster and the relative center of class or center of mass. Background is given, and the relevant genetic algorithm description is provided. The model for the genetic application is presented. Simulation results confirm genetic algorithms to be powerful tools for the solution of optimization problems.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural clustering algorithms for classification and pre-placement of VLSI cells General-to-specific learning of Horn clauses from positive examples Minimization of NAND circuits by rewriting-rules heuristic A generalized stochastic Petri net model of Multibus II Activation of connections to accelerate the learning in recurrent back-propagation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1