基于法向量主成分分析的三维点云聚类分析

Takeshi Hayata, Tomitaka Hotta, M. Iwakiri
{"title":"基于法向量主成分分析的三维点云聚类分析","authors":"Takeshi Hayata, Tomitaka Hotta, M. Iwakiri","doi":"10.1109/GCCE.2015.7398495","DOIUrl":null,"url":null,"abstract":"Technical demands for extraction of significant components from spatial models are increasing as 3D sensors and their application technology has been developed and popularized. In this paper, we propose the 3D point cloud cluster analysis based on the principal component analysis(PCA) of normal-vectors. The distribution of normal vectors depends on a 3D surface shape within the local neighborhood. We discussed the PCA of the distribution of normal vectors to the point cloud. The results of the experiment show that our method could classify a local point cloud as a plane, a boundary and a vertex.","PeriodicalId":363743,"journal":{"name":"2015 IEEE 4th Global Conference on Consumer Electronics (GCCE)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"3D point cloud cluster analysis based on principal component analysis of normal-vectors\",\"authors\":\"Takeshi Hayata, Tomitaka Hotta, M. Iwakiri\",\"doi\":\"10.1109/GCCE.2015.7398495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technical demands for extraction of significant components from spatial models are increasing as 3D sensors and their application technology has been developed and popularized. In this paper, we propose the 3D point cloud cluster analysis based on the principal component analysis(PCA) of normal-vectors. The distribution of normal vectors depends on a 3D surface shape within the local neighborhood. We discussed the PCA of the distribution of normal vectors to the point cloud. The results of the experiment show that our method could classify a local point cloud as a plane, a boundary and a vertex.\",\"PeriodicalId\":363743,\"journal\":{\"name\":\"2015 IEEE 4th Global Conference on Consumer Electronics (GCCE)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 4th Global Conference on Consumer Electronics (GCCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCCE.2015.7398495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 4th Global Conference on Consumer Electronics (GCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCCE.2015.7398495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着三维传感器及其应用技术的发展和普及,从空间模型中提取重要部件的技术需求日益增加。本文提出了基于法向量主成分分析(PCA)的三维点云聚类分析方法。法向量的分布取决于局部邻域内的三维曲面形状。讨论了点云法向量分布的主成分分析。实验结果表明,该方法可以将局部点云划分为平面、边界和顶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D point cloud cluster analysis based on principal component analysis of normal-vectors
Technical demands for extraction of significant components from spatial models are increasing as 3D sensors and their application technology has been developed and popularized. In this paper, we propose the 3D point cloud cluster analysis based on the principal component analysis(PCA) of normal-vectors. The distribution of normal vectors depends on a 3D surface shape within the local neighborhood. We discussed the PCA of the distribution of normal vectors to the point cloud. The results of the experiment show that our method could classify a local point cloud as a plane, a boundary and a vertex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An efficient data loading mechanism for list-style UI with content separation and parallel processing in mobile systems Extension with intelligent agents for the spoken dialogue system for smartphones Story creation approach for sensor network application development Block-based SRAM architecture and thermal-aware memory mappings for three-dimensional channel decoding systems On an efficient masking system using human head tracking parametric speaker system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1