面向可扩展可靠分布式云数据存储性能优化的RRNS基扩展纠错码

M. Babenko, A. Tchernykh, Luis Bernardo Pulido-Gaytan, J. M. Cortés-Mendoza, Egor Shiryaev, E. Golimblevskaia, A. Avetisyan, S. Nesmachnow
{"title":"面向可扩展可靠分布式云数据存储性能优化的RRNS基扩展纠错码","authors":"M. Babenko, A. Tchernykh, Luis Bernardo Pulido-Gaytan, J. M. Cortés-Mendoza, Egor Shiryaev, E. Golimblevskaia, A. Avetisyan, S. Nesmachnow","doi":"10.1109/IPDPSW52791.2021.00087","DOIUrl":null,"url":null,"abstract":"Ensuring reliable data storage in a cloud environment is a challenging problem. One of the efficient mechanisms used to solve it is the Redundant Residue Number System (RRNS) with the projection method, a commonly used mechanism for detecting errors. However, the error correction based on the projection method has exponential complexity depending on the number of control and working moduli. In this paper, we propose an optimization mechanism using a base extension and Hamming distance to reduce the number of calculated projections. We show that they can be reduced up to three times than the classical projection method and, hence, the time complexity of data recovery in the distributed cloud data storage.","PeriodicalId":170832,"journal":{"name":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"RRNS Base Extension Error-Correcting Code for Performance Optimization of Scalable Reliable Distributed Cloud Data Storage\",\"authors\":\"M. Babenko, A. Tchernykh, Luis Bernardo Pulido-Gaytan, J. M. Cortés-Mendoza, Egor Shiryaev, E. Golimblevskaia, A. Avetisyan, S. Nesmachnow\",\"doi\":\"10.1109/IPDPSW52791.2021.00087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensuring reliable data storage in a cloud environment is a challenging problem. One of the efficient mechanisms used to solve it is the Redundant Residue Number System (RRNS) with the projection method, a commonly used mechanism for detecting errors. However, the error correction based on the projection method has exponential complexity depending on the number of control and working moduli. In this paper, we propose an optimization mechanism using a base extension and Hamming distance to reduce the number of calculated projections. We show that they can be reduced up to three times than the classical projection method and, hence, the time complexity of data recovery in the distributed cloud data storage.\",\"PeriodicalId\":170832,\"journal\":{\"name\":\"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW52791.2021.00087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW52791.2021.00087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在云环境中确保可靠的数据存储是一个具有挑战性的问题。基于投影法的冗余余数系统(RRNS)是解决这一问题的有效机制之一,是一种常用的误差检测机制。然而,基于投影法的误差修正具有指数复杂度,这取决于控制数量和工作模量。在本文中,我们提出了一种利用基扩展和汉明距离来减少计算投影数量的优化机制。我们表明,它们可以比经典的投影方法减少三倍,因此,在分布式云数据存储中数据恢复的时间复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RRNS Base Extension Error-Correcting Code for Performance Optimization of Scalable Reliable Distributed Cloud Data Storage
Ensuring reliable data storage in a cloud environment is a challenging problem. One of the efficient mechanisms used to solve it is the Redundant Residue Number System (RRNS) with the projection method, a commonly used mechanism for detecting errors. However, the error correction based on the projection method has exponential complexity depending on the number of control and working moduli. In this paper, we propose an optimization mechanism using a base extension and Hamming distance to reduce the number of calculated projections. We show that they can be reduced up to three times than the classical projection method and, hence, the time complexity of data recovery in the distributed cloud data storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time-Division Multiplexing for FPGA Considering CNN Model Switch Time Load Balancing Schemes for Large Synthetic Population-Based Complex Simulators On Data Parallelism Code Restructuring for HLS Targeting FPGAs Improving the MPI-IO Performance of Applications with Genetic Algorithm based Auto-tuning ScaDL 2021 Invited Speaker-3: AI for Social Impact: Results from multiagent reasoning and learning in the real world
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1