基于交叉语音数据集的深度神经网络单耳语音增强

N. Jamal, N. Fuad, Shahnoor Shanta, M. N. A. Sha'abani
{"title":"基于交叉语音数据集的深度神经网络单耳语音增强","authors":"N. Jamal, N. Fuad, Shahnoor Shanta, M. N. A. Sha'abani","doi":"10.1109/ICSIPA52582.2021.9576789","DOIUrl":null,"url":null,"abstract":"Deep Neural Network (DNN)-based mask estimation approach is an emerging algorithm in monaural speech enhancement. It is used to enhance speech signals from the noisy background by calculating either speech or noise dominant in a particular frame of the noisy speech signal. It can construct complex models for nonlinear processing. However, the limitation of the DNN-based mask algorithm is a generalization of the targeted population. Past research works focused on their target dataset because of time consumption for the audio recording session. Thus, in this work, different recording conditions were used to study the performance of the DNN-based mask estimation approach. The findings revealed that different language test dataset, as well as different conditions, may not give large impact in speech enhancement performance since the algorithm only learn the noise information. But, the performance of speech enhancement is promising when the trained model has been designed properly, especially given the less sample variations in the input dataset involved during the training session.","PeriodicalId":326688,"journal":{"name":"2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monaural Speech Enhancement using Deep Neural Network with Cross-Speech Dataset\",\"authors\":\"N. Jamal, N. Fuad, Shahnoor Shanta, M. N. A. Sha'abani\",\"doi\":\"10.1109/ICSIPA52582.2021.9576789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Neural Network (DNN)-based mask estimation approach is an emerging algorithm in monaural speech enhancement. It is used to enhance speech signals from the noisy background by calculating either speech or noise dominant in a particular frame of the noisy speech signal. It can construct complex models for nonlinear processing. However, the limitation of the DNN-based mask algorithm is a generalization of the targeted population. Past research works focused on their target dataset because of time consumption for the audio recording session. Thus, in this work, different recording conditions were used to study the performance of the DNN-based mask estimation approach. The findings revealed that different language test dataset, as well as different conditions, may not give large impact in speech enhancement performance since the algorithm only learn the noise information. But, the performance of speech enhancement is promising when the trained model has been designed properly, especially given the less sample variations in the input dataset involved during the training session.\",\"PeriodicalId\":326688,\"journal\":{\"name\":\"2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA52582.2021.9576789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA52582.2021.9576789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于深度神经网络(DNN)的掩码估计方法是一种新兴的单音语音增强算法。它通过计算在噪声语音信号的特定帧中占主导地位的语音或噪声来增强来自噪声背景的语音信号。它可以构造复杂的模型进行非线性处理。然而,基于dnn的掩码算法的局限性是对目标人群的泛化。过去的研究工作主要集中在他们的目标数据集,因为音频录制会话的时间消耗。因此,在这项工作中,使用不同的记录条件来研究基于dnn的掩码估计方法的性能。研究结果表明,不同的语言测试数据集以及不同的条件可能不会对语音增强性能产生太大影响,因为算法只学习噪声信息。但是,当训练模型设计得当时,语音增强的性能是有希望的,特别是在训练过程中输入数据集中涉及的样本变化较少的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monaural Speech Enhancement using Deep Neural Network with Cross-Speech Dataset
Deep Neural Network (DNN)-based mask estimation approach is an emerging algorithm in monaural speech enhancement. It is used to enhance speech signals from the noisy background by calculating either speech or noise dominant in a particular frame of the noisy speech signal. It can construct complex models for nonlinear processing. However, the limitation of the DNN-based mask algorithm is a generalization of the targeted population. Past research works focused on their target dataset because of time consumption for the audio recording session. Thus, in this work, different recording conditions were used to study the performance of the DNN-based mask estimation approach. The findings revealed that different language test dataset, as well as different conditions, may not give large impact in speech enhancement performance since the algorithm only learn the noise information. But, the performance of speech enhancement is promising when the trained model has been designed properly, especially given the less sample variations in the input dataset involved during the training session.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Personal Protective Equipment Detection with Live Camera A Fast and Unbiased Minimalistic Resampling Approach for the Particle Filter Sparse Checkerboard Corner Detection from Global Perspective Comparison of Dental Caries Level Images Classification Performance using KNN and SVM Methods An Insight Into the Rise Time of Exponential Smoothing for Speech Enhancement Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1