基于阿特拉斯的胸肌胸区自动分割

Aida Fooladivanda, S. B. Shokouhi, M. Mosavi, N. Ahmadinejad
{"title":"基于阿特拉斯的胸肌胸区自动分割","authors":"Aida Fooladivanda, S. B. Shokouhi, M. Mosavi, N. Ahmadinejad","doi":"10.1109/ICBME.2014.7043932","DOIUrl":null,"url":null,"abstract":"Accurate breast MRI segmentation is an important processing step in Computer Aided Diagnosis (CAD) systems and breast density assessment. Most of the atlas-based breast segmentation methods employ breast area as the template. Instead, we use both pectoral muscle and chest region model as the template, because there is great variability in breast shape and signal intensity. Pectoral muscle and chest region place in similar locations with similar shape and signal intensity. We demonstrate the high quality of the defined template for our atlas-based system. The presented approach is validated with a dataset of 2800 bilateral axial breast MR images from 50 women that include all of Breast Imaging Reporting and Data System (BI-RADS) breast density range. Five quantitative metrics as Dice Similarity Coefficient (DSC), Jaccard Coefficient (JC), total overlap, False Negative (FN) and False Positive (FP) are computed to compare similarity between automatic and manual segmentations. Our proposed algorithm obtains DSC, JC, total overlap, FN and FP values of 0.85, 0.75, 0.83, 0.16 and 0.11, respectively.","PeriodicalId":434822,"journal":{"name":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Atlas-based automatic breast MRI segmentation using pectoral muscle and chest region model\",\"authors\":\"Aida Fooladivanda, S. B. Shokouhi, M. Mosavi, N. Ahmadinejad\",\"doi\":\"10.1109/ICBME.2014.7043932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate breast MRI segmentation is an important processing step in Computer Aided Diagnosis (CAD) systems and breast density assessment. Most of the atlas-based breast segmentation methods employ breast area as the template. Instead, we use both pectoral muscle and chest region model as the template, because there is great variability in breast shape and signal intensity. Pectoral muscle and chest region place in similar locations with similar shape and signal intensity. We demonstrate the high quality of the defined template for our atlas-based system. The presented approach is validated with a dataset of 2800 bilateral axial breast MR images from 50 women that include all of Breast Imaging Reporting and Data System (BI-RADS) breast density range. Five quantitative metrics as Dice Similarity Coefficient (DSC), Jaccard Coefficient (JC), total overlap, False Negative (FN) and False Positive (FP) are computed to compare similarity between automatic and manual segmentations. Our proposed algorithm obtains DSC, JC, total overlap, FN and FP values of 0.85, 0.75, 0.83, 0.16 and 0.11, respectively.\",\"PeriodicalId\":434822,\"journal\":{\"name\":\"2014 21th Iranian Conference on Biomedical Engineering (ICBME)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 21th Iranian Conference on Biomedical Engineering (ICBME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBME.2014.7043932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBME.2014.7043932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

准确的乳腺MRI分割是计算机辅助诊断(CAD)系统和乳腺密度评估的重要处理步骤。基于图集的乳房分割方法大多采用乳房面积作为模板。由于乳房形状和信号强度有很大的可变性,因此我们使用胸肌和胸部区域模型作为模板。胸肌和胸区位置相似,形状和信号强度相似。我们演示了为基于地图集的系统定义的模板的高质量。该方法通过来自50名女性的2800张双侧轴向乳腺磁共振图像数据集进行验证,这些数据集包括所有乳腺成像报告和数据系统(BI-RADS)乳腺密度范围。计算骰子相似系数(DSC), Jaccard系数(JC),总重叠,假阴性(FN)和假阳性(FP)五个定量指标来比较自动和手动分割之间的相似性。我们提出的算法得到DSC、JC、总重叠、FN和FP值分别为0.85、0.75、0.83、0.16和0.11。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atlas-based automatic breast MRI segmentation using pectoral muscle and chest region model
Accurate breast MRI segmentation is an important processing step in Computer Aided Diagnosis (CAD) systems and breast density assessment. Most of the atlas-based breast segmentation methods employ breast area as the template. Instead, we use both pectoral muscle and chest region model as the template, because there is great variability in breast shape and signal intensity. Pectoral muscle and chest region place in similar locations with similar shape and signal intensity. We demonstrate the high quality of the defined template for our atlas-based system. The presented approach is validated with a dataset of 2800 bilateral axial breast MR images from 50 women that include all of Breast Imaging Reporting and Data System (BI-RADS) breast density range. Five quantitative metrics as Dice Similarity Coefficient (DSC), Jaccard Coefficient (JC), total overlap, False Negative (FN) and False Positive (FP) are computed to compare similarity between automatic and manual segmentations. Our proposed algorithm obtains DSC, JC, total overlap, FN and FP values of 0.85, 0.75, 0.83, 0.16 and 0.11, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A time-delay parallel cascade identification system for predicting jaw movements Automated decomposition of needle EMG signal using STFT and wavelet transforms Sparse representation-based super-resolution for diffusion weighted images Investigation of Brain Default Network's activation in autism spectrum disorders using Group Independent Component Analysis Pragmatic modeling of chaotic dynamical systems through artificial neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1