基于卷积神经网络的无线胶囊内窥镜图像的高精度斑块级分类

Vinu Sankar Sadasivan, C. Seelamantula
{"title":"基于卷积神经网络的无线胶囊内窥镜图像的高精度斑块级分类","authors":"Vinu Sankar Sadasivan, C. Seelamantula","doi":"10.1109/ISBI.2019.8759324","DOIUrl":null,"url":null,"abstract":"Wireless capsule endoscopy (WCE) is a technology used to record colored internal images of the gastrointestinal (GI) tract for the purpose of medical diagnosis. It transmits a large number of frames in a single examination cycle, which makes the process of analyzing and diagnosis of abnormalities extremely challenging and time-consuming. In this paper, we propose a technique to automate the abnormality detection in WCE images following a deep learning approach. The WCE images are split into patches and input to a convolutional neural network (CNN). A trained deep neural network is used to classify patches to be either malign or benign. The patches with abnormalities are marked on the WCE image output. We obtained an area under receiver-operating-characteristic curve (AUROC) value of about 98.65% on a publicly available test data containing nine abnormalities.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"73 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"High Accuracy Patch-Level Classification of Wireless Capsule Endoscopy Images Using a Convolutional Neural Network\",\"authors\":\"Vinu Sankar Sadasivan, C. Seelamantula\",\"doi\":\"10.1109/ISBI.2019.8759324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless capsule endoscopy (WCE) is a technology used to record colored internal images of the gastrointestinal (GI) tract for the purpose of medical diagnosis. It transmits a large number of frames in a single examination cycle, which makes the process of analyzing and diagnosis of abnormalities extremely challenging and time-consuming. In this paper, we propose a technique to automate the abnormality detection in WCE images following a deep learning approach. The WCE images are split into patches and input to a convolutional neural network (CNN). A trained deep neural network is used to classify patches to be either malign or benign. The patches with abnormalities are marked on the WCE image output. We obtained an area under receiver-operating-characteristic curve (AUROC) value of about 98.65% on a publicly available test data containing nine abnormalities.\",\"PeriodicalId\":119935,\"journal\":{\"name\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"volume\":\"73 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2019.8759324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

无线胶囊内窥镜(WCE)是一种用于记录胃肠道(GI)内部彩色图像以用于医学诊断的技术。它在单个检查周期中传输大量帧,这使得异常分析和诊断过程非常具有挑战性和耗时。在本文中,我们提出了一种基于深度学习方法的WCE图像异常自动检测技术。WCE图像被分割成小块并输入卷积神经网络(CNN)。使用经过训练的深度神经网络对斑块进行恶性或良性分类。在WCE图像输出上标记异常斑块。在包含9个异常的公开测试数据上,我们获得了接受者工作特征曲线下面积(AUROC)值约为98.65%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High Accuracy Patch-Level Classification of Wireless Capsule Endoscopy Images Using a Convolutional Neural Network
Wireless capsule endoscopy (WCE) is a technology used to record colored internal images of the gastrointestinal (GI) tract for the purpose of medical diagnosis. It transmits a large number of frames in a single examination cycle, which makes the process of analyzing and diagnosis of abnormalities extremely challenging and time-consuming. In this paper, we propose a technique to automate the abnormality detection in WCE images following a deep learning approach. The WCE images are split into patches and input to a convolutional neural network (CNN). A trained deep neural network is used to classify patches to be either malign or benign. The patches with abnormalities are marked on the WCE image output. We obtained an area under receiver-operating-characteristic curve (AUROC) value of about 98.65% on a publicly available test data containing nine abnormalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularisation With a Dictionary of Lines for Medical Ultrasound Image Deconvolution On Multifractal Tissue Characterization in Ultrasound Imaging A Deep Learning Approach To Identify MRNA Localization Patterns Deforming Tessellations For The Segmentation Of Cell Aggregates Multi-Shell Diffusion MRI Measures of Brain Aging: A Preliminary Comparison From ADNI3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1