基于NSGA-U算法的同步降压变换器多目标优化

Wei-Hsin Chang, Jiuhe Wang, Qili Chen
{"title":"基于NSGA-U算法的同步降压变换器多目标优化","authors":"Wei-Hsin Chang, Jiuhe Wang, Qili Chen","doi":"10.1109/ICMA.2016.7558766","DOIUrl":null,"url":null,"abstract":"This paper proposes a multi-objective optimization design method with the discrete variables for synchronous buck converter. This method defines three objective factors: minimize cost, minimize area and maximize efficiency, and a multi-objective optimization problem can be drawn with the objective function of assessment models of cost, area and loss and the constraint of the component database built by the parameter of MOSFETs, inductors and capacitors. This paper uses the NSGA-II algorithm to process the problem of a multi-objective optimization with discrete variables. The NSGA-II algorithm can find the Pareto optimal solution of a very large solution space which has hundreds of thousands feasible combinations of components, and the designers can make the reasonable choice of components by performing the trade-off analysis for the optimal solution when selecting the components. The simulation results demonstrate the feasibility of multi-objective optimization design method in this paper.","PeriodicalId":260197,"journal":{"name":"2016 IEEE International Conference on Mechatronics and Automation","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective optimization of synchronous buck converter based on NSGA-U algorithm\",\"authors\":\"Wei-Hsin Chang, Jiuhe Wang, Qili Chen\",\"doi\":\"10.1109/ICMA.2016.7558766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a multi-objective optimization design method with the discrete variables for synchronous buck converter. This method defines three objective factors: minimize cost, minimize area and maximize efficiency, and a multi-objective optimization problem can be drawn with the objective function of assessment models of cost, area and loss and the constraint of the component database built by the parameter of MOSFETs, inductors and capacitors. This paper uses the NSGA-II algorithm to process the problem of a multi-objective optimization with discrete variables. The NSGA-II algorithm can find the Pareto optimal solution of a very large solution space which has hundreds of thousands feasible combinations of components, and the designers can make the reasonable choice of components by performing the trade-off analysis for the optimal solution when selecting the components. The simulation results demonstrate the feasibility of multi-objective optimization design method in this paper.\",\"PeriodicalId\":260197,\"journal\":{\"name\":\"2016 IEEE International Conference on Mechatronics and Automation\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Mechatronics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA.2016.7558766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Mechatronics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2016.7558766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种具有离散变量的同步降压变换器多目标优化设计方法。该方法定义了成本最小化、面积最小化和效率最大化三个目标因素,并以成本、面积和损耗评估模型为目标函数,以mosfet、电感和电容参数建立的元件库为约束,绘制出一个多目标优化问题。本文采用NSGA-II算法处理具有离散变量的多目标优化问题。NSGA-II算法可以在具有数十万个可行组件组合的非常大的解空间中找到Pareto最优解,设计人员在选择组件时可以通过对最优解进行权衡分析来合理选择组件。仿真结果验证了本文多目标优化设计方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-objective optimization of synchronous buck converter based on NSGA-U algorithm
This paper proposes a multi-objective optimization design method with the discrete variables for synchronous buck converter. This method defines three objective factors: minimize cost, minimize area and maximize efficiency, and a multi-objective optimization problem can be drawn with the objective function of assessment models of cost, area and loss and the constraint of the component database built by the parameter of MOSFETs, inductors and capacitors. This paper uses the NSGA-II algorithm to process the problem of a multi-objective optimization with discrete variables. The NSGA-II algorithm can find the Pareto optimal solution of a very large solution space which has hundreds of thousands feasible combinations of components, and the designers can make the reasonable choice of components by performing the trade-off analysis for the optimal solution when selecting the components. The simulation results demonstrate the feasibility of multi-objective optimization design method in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic lane tracking system based on multi-model fuzzy controller Automatic path and trajectory planning for laser cladding robot based on CAD Analysis of dynamic characteristics of rugged vessel in the process of hepatic perfusion A simulation method for X-ray pulsar signal based on Monte Carlo Study of audiovisual asynchrony signal processing: Robot recognition system of different ages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1