E. Taylor, A. Paxton, H. Schone, R. F. Carson, J. Bristow, J. Lehman, M. Hibbs-Brenner, R. Morgan, T. Marta
{"title":"4.5 MeV质子辐照下AlGaAs垂直腔面发射激光的真空响应","authors":"E. Taylor, A. Paxton, H. Schone, R. F. Carson, J. Bristow, J. Lehman, M. Hibbs-Brenner, R. Morgan, T. Marta","doi":"10.1109/RADECS.1997.698946","DOIUrl":null,"url":null,"abstract":"Vertical cavity surface emitting lasers (VCSELs) have high potential for space applications, yet little is known of their sensitivity to radiation under vacuum conditions. The first observations of a commercially available proton implanted quantum well AlGaAs VCSEL operating at 850 nm in vacuo and irradiated by 4.5 MeV protons by a scanning ion microbeam is presented. Degradation of L-I-V responses at a proton dose of 1.19 MGy are discussed with particular attention drawn to heating arising from increased nonradiative carrier recombination and that resulting from the vacuum environment.","PeriodicalId":106774,"journal":{"name":"RADECS 97. Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. No.97TH8294)","volume":"606 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"In vacuo responses of an AlGaAs vertical cavity surface emitting laser irradiated by 4.5 MeV protons\",\"authors\":\"E. Taylor, A. Paxton, H. Schone, R. F. Carson, J. Bristow, J. Lehman, M. Hibbs-Brenner, R. Morgan, T. Marta\",\"doi\":\"10.1109/RADECS.1997.698946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vertical cavity surface emitting lasers (VCSELs) have high potential for space applications, yet little is known of their sensitivity to radiation under vacuum conditions. The first observations of a commercially available proton implanted quantum well AlGaAs VCSEL operating at 850 nm in vacuo and irradiated by 4.5 MeV protons by a scanning ion microbeam is presented. Degradation of L-I-V responses at a proton dose of 1.19 MGy are discussed with particular attention drawn to heating arising from increased nonradiative carrier recombination and that resulting from the vacuum environment.\",\"PeriodicalId\":106774,\"journal\":{\"name\":\"RADECS 97. Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. No.97TH8294)\",\"volume\":\"606 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RADECS 97. Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. No.97TH8294)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADECS.1997.698946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RADECS 97. Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. No.97TH8294)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADECS.1997.698946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In vacuo responses of an AlGaAs vertical cavity surface emitting laser irradiated by 4.5 MeV protons
Vertical cavity surface emitting lasers (VCSELs) have high potential for space applications, yet little is known of their sensitivity to radiation under vacuum conditions. The first observations of a commercially available proton implanted quantum well AlGaAs VCSEL operating at 850 nm in vacuo and irradiated by 4.5 MeV protons by a scanning ion microbeam is presented. Degradation of L-I-V responses at a proton dose of 1.19 MGy are discussed with particular attention drawn to heating arising from increased nonradiative carrier recombination and that resulting from the vacuum environment.