耶路撒冷交叉频率选择表面支持的准八木天线

S. Melais, D. Cure, T. Weller
{"title":"耶路撒冷交叉频率选择表面支持的准八木天线","authors":"S. Melais, D. Cure, T. Weller","doi":"10.1155/2013/354789","DOIUrl":null,"url":null,"abstract":"A quasi-Yagi antenna is developed to operate at 2.4 GHz (ISM band) presenting a low profile and off-axis radiation when packaged over a metal ground plane. The off-axis radiation is realized by incorporating a Jerusalem cross frequency selective surface (JC-FSS) as the ground plane for the antenna. A JC-FSS is preferred because of its frequency stability in the operating band for a large angular spectrum (≈70°) of TE- and TM-polarized incident waves. In this research, the substrate of the antenna flush-mounted on top of the FSS is added to the JC-FSS model and allows for a smaller cell grid. The prepared quasi-Yagi antenna over the JC-FSS offered 260 MHz of functional bandwidth and 54° of beam tilt towards the end-fire direction. To the best of the authors’ knowledge this is the first instance that these two structures are combined for off-axis radiation. Additionally, to support the preferred use of the JC-FSS, the quasi-Yagi is backed by a square patch (SP) FSS for comparison purposes.","PeriodicalId":232251,"journal":{"name":"International Journal of Microwave Science and Technology","volume":"230 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Quasi-Yagi Antenna Backed by a Jerusalem Cross Frequency Selective Surface\",\"authors\":\"S. Melais, D. Cure, T. Weller\",\"doi\":\"10.1155/2013/354789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quasi-Yagi antenna is developed to operate at 2.4 GHz (ISM band) presenting a low profile and off-axis radiation when packaged over a metal ground plane. The off-axis radiation is realized by incorporating a Jerusalem cross frequency selective surface (JC-FSS) as the ground plane for the antenna. A JC-FSS is preferred because of its frequency stability in the operating band for a large angular spectrum (≈70°) of TE- and TM-polarized incident waves. In this research, the substrate of the antenna flush-mounted on top of the FSS is added to the JC-FSS model and allows for a smaller cell grid. The prepared quasi-Yagi antenna over the JC-FSS offered 260 MHz of functional bandwidth and 54° of beam tilt towards the end-fire direction. To the best of the authors’ knowledge this is the first instance that these two structures are combined for off-axis radiation. Additionally, to support the preferred use of the JC-FSS, the quasi-Yagi is backed by a square patch (SP) FSS for comparison purposes.\",\"PeriodicalId\":232251,\"journal\":{\"name\":\"International Journal of Microwave Science and Technology\",\"volume\":\"230 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microwave Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/354789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/354789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

设计了一种工作在2.4 GHz (ISM频段)的准八木天线,当封装在金属接地面上时,呈现出低轮廓和离轴辐射。离轴辐射是通过将耶路撒冷交叉频率选择面(JC-FSS)作为天线的接地面来实现的。JC-FSS是首选,因为它在TE和tm极化入射波的大角谱(≈70°)的工作频带内频率稳定。在本研究中,在FSS顶部的天线衬底被添加到JC-FSS模型中,从而允许更小的小区网格。在JC-FSS上制备的准八木天线的功能带宽为260 MHz,波束向射末方向倾斜54°。据作者所知,这是第一次将这两种结构结合起来进行离轴辐射。此外,为了支持JC-FSS的首选使用,准八木由方形贴片(SP) FSS支持,以进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Quasi-Yagi Antenna Backed by a Jerusalem Cross Frequency Selective Surface
A quasi-Yagi antenna is developed to operate at 2.4 GHz (ISM band) presenting a low profile and off-axis radiation when packaged over a metal ground plane. The off-axis radiation is realized by incorporating a Jerusalem cross frequency selective surface (JC-FSS) as the ground plane for the antenna. A JC-FSS is preferred because of its frequency stability in the operating band for a large angular spectrum (≈70°) of TE- and TM-polarized incident waves. In this research, the substrate of the antenna flush-mounted on top of the FSS is added to the JC-FSS model and allows for a smaller cell grid. The prepared quasi-Yagi antenna over the JC-FSS offered 260 MHz of functional bandwidth and 54° of beam tilt towards the end-fire direction. To the best of the authors’ knowledge this is the first instance that these two structures are combined for off-axis radiation. Additionally, to support the preferred use of the JC-FSS, the quasi-Yagi is backed by a square patch (SP) FSS for comparison purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of Cracks in Concrete Structure Using Microwave Imaging Technique Reconfigurable and Tunable Filtenna for Cognitive LTE Femtocell Base Stations A Frequency Agile Semicircular Slot Antenna For Cognitive Radio System Ultrawideband Noise Radar Tomography: Principles, Simulation, and Experimental Validation Comparative Assessment of GaN as a Microwave Source with Si and SiC for Mixed Mode Operation at Submillimetre Wave Band of Frequency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1