{"title":"自动充气:用于弹出式制造的化学充气","authors":"Penelope Webb, V. Sumini, Amos Golan, H. Ishii","doi":"10.1145/3290607.3312860","DOIUrl":null,"url":null,"abstract":"This research aims to utilize an output method for zero energy pop-up fabrication using chemical inflation as a technique for instant, hardware-free shape change. By applying state-changing techniques as a medium for material activation, we provide a framework for a two-part assembly process starting from the manufacturing side whereby a rigid structural body is given its form, through to the user side, where the form potential of a soft structure is activated and the structure becomes complete. To demonstrate this technique, we created two use cases: firstly, a compression material for emergency response, and secondly a self-inflating packaging system. This paper provides details on the auto-inflation process as well as the corresponding digital tool for the design of pneumatic materials. The results show the efficiency of using zero energy auto-inflatable structures for both medical applications and packaging. This rapidly deployable inflatable kit starts from the assumption that every product can provide its own contribution by responding in the best way to a specific application.","PeriodicalId":389485,"journal":{"name":"Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Auto-Inflatables: Chemical Inflation for Pop-Up Fabrication\",\"authors\":\"Penelope Webb, V. Sumini, Amos Golan, H. Ishii\",\"doi\":\"10.1145/3290607.3312860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to utilize an output method for zero energy pop-up fabrication using chemical inflation as a technique for instant, hardware-free shape change. By applying state-changing techniques as a medium for material activation, we provide a framework for a two-part assembly process starting from the manufacturing side whereby a rigid structural body is given its form, through to the user side, where the form potential of a soft structure is activated and the structure becomes complete. To demonstrate this technique, we created two use cases: firstly, a compression material for emergency response, and secondly a self-inflating packaging system. This paper provides details on the auto-inflation process as well as the corresponding digital tool for the design of pneumatic materials. The results show the efficiency of using zero energy auto-inflatable structures for both medical applications and packaging. This rapidly deployable inflatable kit starts from the assumption that every product can provide its own contribution by responding in the best way to a specific application.\",\"PeriodicalId\":389485,\"journal\":{\"name\":\"Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3290607.3312860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3290607.3312860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Auto-Inflatables: Chemical Inflation for Pop-Up Fabrication
This research aims to utilize an output method for zero energy pop-up fabrication using chemical inflation as a technique for instant, hardware-free shape change. By applying state-changing techniques as a medium for material activation, we provide a framework for a two-part assembly process starting from the manufacturing side whereby a rigid structural body is given its form, through to the user side, where the form potential of a soft structure is activated and the structure becomes complete. To demonstrate this technique, we created two use cases: firstly, a compression material for emergency response, and secondly a self-inflating packaging system. This paper provides details on the auto-inflation process as well as the corresponding digital tool for the design of pneumatic materials. The results show the efficiency of using zero energy auto-inflatable structures for both medical applications and packaging. This rapidly deployable inflatable kit starts from the assumption that every product can provide its own contribution by responding in the best way to a specific application.