基于PGAS的并行代数多网格求解器

Niclas Jansson, E. Laure
{"title":"基于PGAS的并行代数多网格求解器","authors":"Niclas Jansson, E. Laure","doi":"10.1145/3176364.3176368","DOIUrl":null,"url":null,"abstract":"The Algebraic Multigrid (AMG) method has over the years developed into an efficient tool for solving unstructured linear systems. The need to solve large industrial problems discretized on unstructured meshes, has been a key motivation for devising a parallel AMG method. Despite some success, the key part of the AMG algorithm; the coarsening step, is far from trivial to parallelize efficiently. We here introduce a novel parallelization of the inherently sequential Ruge-Stüben coarsening algorithm, that retains most of the good interpolation properties of the original method. Our parallelization is based on the Partitioned Global Address Space (PGAS) abstraction, which greatly simplifies the parallelization as compared to traditional message passing based implementations. The coarsening algorithm and solver is described in detail and a performance study on a Cray XC40 is presented.","PeriodicalId":371083,"journal":{"name":"Proceedings of Workshops of HPC Asia","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards a parallel algebraic multigrid solver using PGAS\",\"authors\":\"Niclas Jansson, E. Laure\",\"doi\":\"10.1145/3176364.3176368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Algebraic Multigrid (AMG) method has over the years developed into an efficient tool for solving unstructured linear systems. The need to solve large industrial problems discretized on unstructured meshes, has been a key motivation for devising a parallel AMG method. Despite some success, the key part of the AMG algorithm; the coarsening step, is far from trivial to parallelize efficiently. We here introduce a novel parallelization of the inherently sequential Ruge-Stüben coarsening algorithm, that retains most of the good interpolation properties of the original method. Our parallelization is based on the Partitioned Global Address Space (PGAS) abstraction, which greatly simplifies the parallelization as compared to traditional message passing based implementations. The coarsening algorithm and solver is described in detail and a performance study on a Cray XC40 is presented.\",\"PeriodicalId\":371083,\"journal\":{\"name\":\"Proceedings of Workshops of HPC Asia\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Workshops of HPC Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3176364.3176368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Workshops of HPC Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3176364.3176368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

代数多重网格(AMG)方法多年来已发展成为求解非结构化线性系统的有效工具。需要解决大型工业问题离散在非结构化网格上,一直是设计并行AMG方法的一个关键动机。尽管取得了一些成功,但AMG算法的关键部分;粗化步骤对于有效地并行化是非常重要的。我们在这里介绍了一种新的并行化固有序列ruge - st粗化算法,它保留了原始方法的大部分良好的插值特性。我们的并行化基于分区全局地址空间(PGAS)抽象,与传统的基于消息传递的实现相比,它极大地简化了并行化。详细介绍了粗化算法和求解器,并对Cray XC40进行了性能研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a parallel algebraic multigrid solver using PGAS
The Algebraic Multigrid (AMG) method has over the years developed into an efficient tool for solving unstructured linear systems. The need to solve large industrial problems discretized on unstructured meshes, has been a key motivation for devising a parallel AMG method. Despite some success, the key part of the AMG algorithm; the coarsening step, is far from trivial to parallelize efficiently. We here introduce a novel parallelization of the inherently sequential Ruge-Stüben coarsening algorithm, that retains most of the good interpolation properties of the original method. Our parallelization is based on the Partitioned Global Address Space (PGAS) abstraction, which greatly simplifies the parallelization as compared to traditional message passing based implementations. The coarsening algorithm and solver is described in detail and a performance study on a Cray XC40 is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scaling collectives on large clusters using Intel(R) architecture processors and fabric OpenMP-based parallel implementation of matrix-matrix multiplication on the intel knights landing Recent experiences in using MPI-3 RMA in the DASH PGAS runtime Optimizing a particle-in-cell code on Intel knights landing Towards a parallel algebraic multigrid solver using PGAS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1