{"title":"分类认知引擎状态预测器在信道衰落中的应用","authors":"Rigoberto Roche', J. Downey, Mick V. Koch","doi":"10.1109/CCAAW.2019.8904888","DOIUrl":null,"url":null,"abstract":"This study presents the application of machine learning (ML) to a space-to-ground communication link, showing how ML can be used to detect the presence of detrimental channel fading. Using this channel state information, the communication link can be used more efficiently by reducing the amount of lost data during fading. The motivation for this work is based on channel fading observed during on-orbit operations with NASA's Space Communication and Navigation (SCaN) testbed on the International Space Station (ISS). This paper presents the process to extract a target concept (fading and not-fading) from the raw data. The preprocessing and data exploration effort is explained in detail, with a list of assumptions made for parsing and labelling the dataset. The model selection process is explained, specifically emphasizing the benefits of using an ensemble of algorithms with majority voting for binary classification of the channel state. Experimental results are shown, highlighting how an end-to-end communication system can utilize knowledge of the channel fading status to identity fading and take appropriate action. With a laboratory testbed to emulate channel fading, the overall performance is compared to standard adaptive methods without fading knowledge, such as adaptive coding and modulation.","PeriodicalId":196580,"journal":{"name":"2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW)","volume":"32 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State Predictor of Classification Cognitive Engine Applied to Channel Fading\",\"authors\":\"Rigoberto Roche', J. Downey, Mick V. Koch\",\"doi\":\"10.1109/CCAAW.2019.8904888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents the application of machine learning (ML) to a space-to-ground communication link, showing how ML can be used to detect the presence of detrimental channel fading. Using this channel state information, the communication link can be used more efficiently by reducing the amount of lost data during fading. The motivation for this work is based on channel fading observed during on-orbit operations with NASA's Space Communication and Navigation (SCaN) testbed on the International Space Station (ISS). This paper presents the process to extract a target concept (fading and not-fading) from the raw data. The preprocessing and data exploration effort is explained in detail, with a list of assumptions made for parsing and labelling the dataset. The model selection process is explained, specifically emphasizing the benefits of using an ensemble of algorithms with majority voting for binary classification of the channel state. Experimental results are shown, highlighting how an end-to-end communication system can utilize knowledge of the channel fading status to identity fading and take appropriate action. With a laboratory testbed to emulate channel fading, the overall performance is compared to standard adaptive methods without fading knowledge, such as adaptive coding and modulation.\",\"PeriodicalId\":196580,\"journal\":{\"name\":\"2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW)\",\"volume\":\"32 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCAAW.2019.8904888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAAW.2019.8904888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
State Predictor of Classification Cognitive Engine Applied to Channel Fading
This study presents the application of machine learning (ML) to a space-to-ground communication link, showing how ML can be used to detect the presence of detrimental channel fading. Using this channel state information, the communication link can be used more efficiently by reducing the amount of lost data during fading. The motivation for this work is based on channel fading observed during on-orbit operations with NASA's Space Communication and Navigation (SCaN) testbed on the International Space Station (ISS). This paper presents the process to extract a target concept (fading and not-fading) from the raw data. The preprocessing and data exploration effort is explained in detail, with a list of assumptions made for parsing and labelling the dataset. The model selection process is explained, specifically emphasizing the benefits of using an ensemble of algorithms with majority voting for binary classification of the channel state. Experimental results are shown, highlighting how an end-to-end communication system can utilize knowledge of the channel fading status to identity fading and take appropriate action. With a laboratory testbed to emulate channel fading, the overall performance is compared to standard adaptive methods without fading knowledge, such as adaptive coding and modulation.