基于非线性特征的不同表示形式在音乐类型分类中的比较

Athanasia Zlatintsi, P. Maragos
{"title":"基于非线性特征的不同表示形式在音乐类型分类中的比较","authors":"Athanasia Zlatintsi, P. Maragos","doi":"10.5281/ZENODO.44161","DOIUrl":null,"url":null,"abstract":"In this paper, we examine the descriptiveness and recognition properties of different feature representations for the analysis of musical signals, aiming in the exploration of their microand macro-structures, for the task of music genre classification. We explore nonlinear methods, such as the AM-FM model and ideas from fractal theory, so as to model the time-varying harmonic structure of musical signals and the geometrical complexity of the music waveform. The different feature representations' efficacy is compared regarding their recognition properties for the specific task. The proposed features are evaluated against and in combination with Mel frequency cepstral coefficients (MFCC), using both static and dynamic classifiers, accomplishing an error reduction of 28%, illustrating that they can capture important aspects of music.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Comparison of different representations based on nonlinear features for music genre classification\",\"authors\":\"Athanasia Zlatintsi, P. Maragos\",\"doi\":\"10.5281/ZENODO.44161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we examine the descriptiveness and recognition properties of different feature representations for the analysis of musical signals, aiming in the exploration of their microand macro-structures, for the task of music genre classification. We explore nonlinear methods, such as the AM-FM model and ideas from fractal theory, so as to model the time-varying harmonic structure of musical signals and the geometrical complexity of the music waveform. The different feature representations' efficacy is compared regarding their recognition properties for the specific task. The proposed features are evaluated against and in combination with Mel frequency cepstral coefficients (MFCC), using both static and dynamic classifiers, accomplishing an error reduction of 28%, illustrating that they can capture important aspects of music.\",\"PeriodicalId\":198408,\"journal\":{\"name\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.44161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.44161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了音乐信号分析中不同特征表示的描述性和识别特性,旨在探索其微观和宏观结构,以完成音乐类型分类的任务。我们探索非线性方法,如AM-FM模型和分形理论的思想,以模拟音乐信号的时变谐波结构和音乐波形的几何复杂性。比较了不同特征表示对特定任务的识别性能。使用静态和动态分类器对所提出的特征进行评估,并与Mel频率倒谱系数(MFCC)相结合,实现了28%的误差减少,说明它们可以捕获音乐的重要方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of different representations based on nonlinear features for music genre classification
In this paper, we examine the descriptiveness and recognition properties of different feature representations for the analysis of musical signals, aiming in the exploration of their microand macro-structures, for the task of music genre classification. We explore nonlinear methods, such as the AM-FM model and ideas from fractal theory, so as to model the time-varying harmonic structure of musical signals and the geometrical complexity of the music waveform. The different feature representations' efficacy is compared regarding their recognition properties for the specific task. The proposed features are evaluated against and in combination with Mel frequency cepstral coefficients (MFCC), using both static and dynamic classifiers, accomplishing an error reduction of 28%, illustrating that they can capture important aspects of music.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An improved chirp group delay based algorithm for estimating the vocal tract response Bone microstructure reconstructions from few projections with stochastic nonlinear diffusion Adaptive waveform selection and target tracking by wideband multistatic radar/sonar systems Exploiting time and frequency information for Delay/Doppler altimetry Merging extremum seeking and self-optimizing narrowband interference canceller - overdetermined case
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1