低成本短程自供电无线物联网设备的设计、开发和部署

Rolf Arne Kjellby, Thor Eirik Johnsrud, Svein Erik Løtveit, Linga Reddy Cenkeramaddi, B. Beferull-Lozano, Soumya Joshi, Anders Frøytlog, Thomas Jordbru, Meghana Bhange
{"title":"低成本短程自供电无线物联网设备的设计、开发和部署","authors":"Rolf Arne Kjellby, Thor Eirik Johnsrud, Svein Erik Løtveit, Linga Reddy Cenkeramaddi, B. Beferull-Lozano, Soumya Joshi, Anders Frøytlog, Thomas Jordbru, Meghana Bhange","doi":"10.1109/ises.2018.00031","DOIUrl":null,"url":null,"abstract":"This article presents the design and prototype implementation of a low-cost and short-range self-powered wireless IoT device based on energy harvesting for both indoor and outdoor applications. Prototyped devices are deployed in a star network configuration with a custom protocol. Based on measurements, devices achieve a line-of-sight range of 228.5m above 40m from the ground level. Nodes are powered based on energy harvesting from a small 0.36W solar panel and 120mAh lithium button cell as storage elements. The test in the well-lit room shows an average harvested power of 941.94µW over a period of 2.5 days, while under the low lighting conditions showed an average of 212µW over a period of 24h. From measurements, a fully charged rechargeable 120mAh cell lasts for 278 days with 55s transmission interval. Temperature, visible lights level and relative humidity sensors are integrated into the nodes.","PeriodicalId":447663,"journal":{"name":"2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design, Development and Deployment of Low-Cost Short-Range Self-Powered Wireless IoT Devices\",\"authors\":\"Rolf Arne Kjellby, Thor Eirik Johnsrud, Svein Erik Løtveit, Linga Reddy Cenkeramaddi, B. Beferull-Lozano, Soumya Joshi, Anders Frøytlog, Thomas Jordbru, Meghana Bhange\",\"doi\":\"10.1109/ises.2018.00031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents the design and prototype implementation of a low-cost and short-range self-powered wireless IoT device based on energy harvesting for both indoor and outdoor applications. Prototyped devices are deployed in a star network configuration with a custom protocol. Based on measurements, devices achieve a line-of-sight range of 228.5m above 40m from the ground level. Nodes are powered based on energy harvesting from a small 0.36W solar panel and 120mAh lithium button cell as storage elements. The test in the well-lit room shows an average harvested power of 941.94µW over a period of 2.5 days, while under the low lighting conditions showed an average of 212µW over a period of 24h. From measurements, a fully charged rechargeable 120mAh cell lasts for 278 days with 55s transmission interval. Temperature, visible lights level and relative humidity sensors are integrated into the nodes.\",\"PeriodicalId\":447663,\"journal\":{\"name\":\"2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ises.2018.00031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ises.2018.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种基于能量收集的低成本、短距离自供电无线物联网设备的设计和原型实现,适用于室内和室外应用。原型设备部署在带有自定义协议的星型网络配置中。根据测量结果,设备距离地面40米以上的视距范围为228.5米。节点是基于一个小的0.36瓦太阳能电池板和120mAh锂纽扣电池作为存储元件的能量收集。在光照充足的房间进行的测试显示,在2.5天的时间内平均收获功率为941.94µW,而在光照不足的条件下,在24小时的时间内平均收获功率为212µW。根据测量,120mAh的可充电电池充满电后可以使用278天,传输间隔为55s。温度、可见光水平和相对湿度传感器被集成到节点中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design, Development and Deployment of Low-Cost Short-Range Self-Powered Wireless IoT Devices
This article presents the design and prototype implementation of a low-cost and short-range self-powered wireless IoT device based on energy harvesting for both indoor and outdoor applications. Prototyped devices are deployed in a star network configuration with a custom protocol. Based on measurements, devices achieve a line-of-sight range of 228.5m above 40m from the ground level. Nodes are powered based on energy harvesting from a small 0.36W solar panel and 120mAh lithium button cell as storage elements. The test in the well-lit room shows an average harvested power of 941.94µW over a period of 2.5 days, while under the low lighting conditions showed an average of 212µW over a period of 24h. From measurements, a fully charged rechargeable 120mAh cell lasts for 278 days with 55s transmission interval. Temperature, visible lights level and relative humidity sensors are integrated into the nodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of Thin Zirconia Films Deposited by ECD on ITO Coated Glass for Biosensing Applications Development of a Multi-Fog Based Water Quality Monitoring System Using Bio-Sensing Platform A Power Efficient Crossbar Arbitration in Multi-NoC for Multicast and Broadcast Traffic Design of Software and Data Analytics for Self-Powered Wireless IoT Devices Modeling of Square Microhotplate and its Validation with Experimental Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1