利用主动学习方法降低切片组织图像的标注成本

Xu Jin, Hong An, Jue Wang, Ke Wen, Zheng Wu
{"title":"利用主动学习方法降低切片组织图像的标注成本","authors":"Xu Jin, Hong An, Jue Wang, Ke Wen, Zheng Wu","doi":"10.1145/3469951.3469960","DOIUrl":null,"url":null,"abstract":"Histopathology serves as the gold standard for tumor diagnosis. Whole slide scanners have made computer vision-based methods available for pathologists to locate regions of high diagnostic significance. An essential step of whole slide image (WSI) diagnosis is the segmentation of the tumor region by generating a tumor probability heatmap. Most WSI diagnosis methods use patch-based classifiers or segmentation models, they both require a large set of training patches from annotated WSIs. Annotating WSIs is time-consuming and laborious. Active learning is a method that can suggest the most informative unlabeled data for annotation, but traditional active learning methods are not directly applicable for WSIs. Meanwhile, unannotated WSIs also contain rich information that can be further exploited by self-supervised learning. By utilizing unannotated data alongside active learning, we proposed a self-supervised active learning framework for tumor region segmentation of WSIs. The proposed method is evaluated on the public available CAMELYON dataset and achieved satisfying performance using 3% of the annotated data.","PeriodicalId":313453,"journal":{"name":"Proceedings of the 2021 3rd International Conference on Image Processing and Machine Vision","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Reducing the Annotation Cost of Whole Slide Histology Images using Active Learning\",\"authors\":\"Xu Jin, Hong An, Jue Wang, Ke Wen, Zheng Wu\",\"doi\":\"10.1145/3469951.3469960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Histopathology serves as the gold standard for tumor diagnosis. Whole slide scanners have made computer vision-based methods available for pathologists to locate regions of high diagnostic significance. An essential step of whole slide image (WSI) diagnosis is the segmentation of the tumor region by generating a tumor probability heatmap. Most WSI diagnosis methods use patch-based classifiers or segmentation models, they both require a large set of training patches from annotated WSIs. Annotating WSIs is time-consuming and laborious. Active learning is a method that can suggest the most informative unlabeled data for annotation, but traditional active learning methods are not directly applicable for WSIs. Meanwhile, unannotated WSIs also contain rich information that can be further exploited by self-supervised learning. By utilizing unannotated data alongside active learning, we proposed a self-supervised active learning framework for tumor region segmentation of WSIs. The proposed method is evaluated on the public available CAMELYON dataset and achieved satisfying performance using 3% of the annotated data.\",\"PeriodicalId\":313453,\"journal\":{\"name\":\"Proceedings of the 2021 3rd International Conference on Image Processing and Machine Vision\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 3rd International Conference on Image Processing and Machine Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469951.3469960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 3rd International Conference on Image Processing and Machine Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469951.3469960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

组织病理学是肿瘤诊断的金标准。整个切片扫描仪使得基于计算机视觉的方法可用于病理学家定位具有高诊断意义的区域。通过生成肿瘤概率热图对肿瘤区域进行分割是全幻灯片诊断的一个重要步骤。大多数WSI诊断方法使用基于补丁的分类器或分割模型,它们都需要大量来自标注WSI的训练补丁集。注释wsi既耗时又费力。主动学习是一种可以建议最具信息量的未标记数据进行标注的方法,但传统的主动学习方法并不直接适用于wsi。同时,未标注的wsi还包含丰富的信息,可以通过自监督学习进一步利用。通过利用无标注数据和主动学习,我们提出了一种用于wsi肿瘤区域分割的自监督主动学习框架。在CAMELYON公共数据集上对该方法进行了评估,使用3%的标注数据获得了令人满意的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reducing the Annotation Cost of Whole Slide Histology Images using Active Learning
Histopathology serves as the gold standard for tumor diagnosis. Whole slide scanners have made computer vision-based methods available for pathologists to locate regions of high diagnostic significance. An essential step of whole slide image (WSI) diagnosis is the segmentation of the tumor region by generating a tumor probability heatmap. Most WSI diagnosis methods use patch-based classifiers or segmentation models, they both require a large set of training patches from annotated WSIs. Annotating WSIs is time-consuming and laborious. Active learning is a method that can suggest the most informative unlabeled data for annotation, but traditional active learning methods are not directly applicable for WSIs. Meanwhile, unannotated WSIs also contain rich information that can be further exploited by self-supervised learning. By utilizing unannotated data alongside active learning, we proposed a self-supervised active learning framework for tumor region segmentation of WSIs. The proposed method is evaluated on the public available CAMELYON dataset and achieved satisfying performance using 3% of the annotated data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computation Offloading for Better Real-Time Technical Market Analysis on Mobile Devices Research on UAV Signal Classification Algorithm Based on Deep Learning Integration of Machine Learning with MEC for Intelligent Applications A Real-Time Single-Shot Multi-Face Detection, Landmark Localization, and Gender Classification Analyze of the Model for Cancer Transmission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1