铁电畴壁的神经形态功能

Pankaj Sharma, J. Seidel
{"title":"铁电畴壁的神经形态功能","authors":"Pankaj Sharma, J. Seidel","doi":"10.1088/2634-4386/accfbb","DOIUrl":null,"url":null,"abstract":"Mimicking and replicating the function of biological synapses with engineered materials is a challenge for the 21st century. The field of neuromorphic computing has recently seen significant developments, and new concepts are being explored. One of these approaches uses topological defects, such as domain walls in ferroic materials, especially ferroelectrics, that can naturally be addressed by electric fields to alter and tailor their intrinsic or extrinsic properties and functionality. Here, we review concepts of neuromorphic functionality found in ferroelectric domain walls and give a perspective on future developments and applications in low-energy, agile, brain-inspired electronics and computing.","PeriodicalId":198030,"journal":{"name":"Neuromorphic Computing and Engineering","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Neuromorphic functionality of ferroelectric domain walls\",\"authors\":\"Pankaj Sharma, J. Seidel\",\"doi\":\"10.1088/2634-4386/accfbb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mimicking and replicating the function of biological synapses with engineered materials is a challenge for the 21st century. The field of neuromorphic computing has recently seen significant developments, and new concepts are being explored. One of these approaches uses topological defects, such as domain walls in ferroic materials, especially ferroelectrics, that can naturally be addressed by electric fields to alter and tailor their intrinsic or extrinsic properties and functionality. Here, we review concepts of neuromorphic functionality found in ferroelectric domain walls and give a perspective on future developments and applications in low-energy, agile, brain-inspired electronics and computing.\",\"PeriodicalId\":198030,\"journal\":{\"name\":\"Neuromorphic Computing and Engineering\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuromorphic Computing and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2634-4386/accfbb\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuromorphic Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2634-4386/accfbb","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

用工程材料模拟和复制生物突触的功能是21世纪的一个挑战。神经形态计算领域最近有了重大的发展,新的概念正在被探索。其中一种方法是利用拓扑缺陷,如铁材料中的畴壁,特别是铁电体,可以自然地通过电场来改变和调整其内在或外在的特性和功能。在这里,我们回顾了在铁电畴壁中发现的神经形态功能的概念,并对未来在低能量、敏捷、大脑启发电子和计算方面的发展和应用进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neuromorphic functionality of ferroelectric domain walls
Mimicking and replicating the function of biological synapses with engineered materials is a challenge for the 21st century. The field of neuromorphic computing has recently seen significant developments, and new concepts are being explored. One of these approaches uses topological defects, such as domain walls in ferroic materials, especially ferroelectrics, that can naturally be addressed by electric fields to alter and tailor their intrinsic or extrinsic properties and functionality. Here, we review concepts of neuromorphic functionality found in ferroelectric domain walls and give a perspective on future developments and applications in low-energy, agile, brain-inspired electronics and computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
期刊最新文献
Difficulties and approaches in enabling learning-in-memory using crossbar arrays of memristors A liquid optical memristor using photochromic effect and capillary effect Tissue-like interfacing of planar electrochemical organic neuromorphic devices Implementation of two-step gradual reset scheme for enhancing state uniformity of 2D hBN-based memristors for image processing Modulating short-term and long-term plasticity of polymer-based artificial synapses for neuromorphic computing and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1