利用无人机图像识别蚊子繁殖地点的机器学习方法

A. Amarasinghe, C. Suduwella, Charitha Elvitigala, Lasith Niroshan, Rangana Jayashanka Amaraweera, K. Gunawardana, Prabash Kumarasinghe, K. Zoysa, C. Keppetiyagama
{"title":"利用无人机图像识别蚊子繁殖地点的机器学习方法","authors":"A. Amarasinghe, C. Suduwella, Charitha Elvitigala, Lasith Niroshan, Rangana Jayashanka Amaraweera, K. Gunawardana, Prabash Kumarasinghe, K. Zoysa, C. Keppetiyagama","doi":"10.1145/3131672.3136986","DOIUrl":null,"url":null,"abstract":"Dengue is one of the deadly and fast spreading diseases in Sri Lanka. The female Aedes mosquito is the dengue vector and these mosquitoes breed in clear and non-flowing water. The Public Health Inspectors (PHIs) are tasked with detecting and eliminating such water collection areas. However, they face the problem of detecting potential breeding sites in hard-to-reach areas. With the technological development, the drones come as one of the most cost effective unmanned vehicles to access the places that a man cannot access. This paper presents a novel approach for identifying mosquito breeding areas via drone images through the distinct coloration of those areas by applying the Histogram of Oriented Gradients (HOG) algorithm. Using the HOG algorithm, we detect potential water retention areas using drone images.","PeriodicalId":424262,"journal":{"name":"Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A Machine Learning Approach for Identifying Mosquito Breeding Sites via Drone Images\",\"authors\":\"A. Amarasinghe, C. Suduwella, Charitha Elvitigala, Lasith Niroshan, Rangana Jayashanka Amaraweera, K. Gunawardana, Prabash Kumarasinghe, K. Zoysa, C. Keppetiyagama\",\"doi\":\"10.1145/3131672.3136986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dengue is one of the deadly and fast spreading diseases in Sri Lanka. The female Aedes mosquito is the dengue vector and these mosquitoes breed in clear and non-flowing water. The Public Health Inspectors (PHIs) are tasked with detecting and eliminating such water collection areas. However, they face the problem of detecting potential breeding sites in hard-to-reach areas. With the technological development, the drones come as one of the most cost effective unmanned vehicles to access the places that a man cannot access. This paper presents a novel approach for identifying mosquito breeding areas via drone images through the distinct coloration of those areas by applying the Histogram of Oriented Gradients (HOG) algorithm. Using the HOG algorithm, we detect potential water retention areas using drone images.\",\"PeriodicalId\":424262,\"journal\":{\"name\":\"Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3131672.3136986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3131672.3136986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

登革热是斯里兰卡致命且传播迅速的疾病之一。雌伊蚊是登革热病媒,这些蚊子在清澈和不流动的水中繁殖。公共卫生检查员的任务是发现和消除这些集水区。然而,他们面临着在难以到达的地区发现潜在繁殖地点的问题。随着技术的发展,无人机成为最具成本效益的无人驾驶工具之一,可以进入人类无法进入的地方。本文提出了一种基于定向梯度直方图(Histogram of Oriented Gradients, HOG)算法,利用无人机图像中不同颜色的区域识别蚊虫孳生区域的新方法。使用HOG算法,我们使用无人机图像检测潜在的水潴留区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Machine Learning Approach for Identifying Mosquito Breeding Sites via Drone Images
Dengue is one of the deadly and fast spreading diseases in Sri Lanka. The female Aedes mosquito is the dengue vector and these mosquitoes breed in clear and non-flowing water. The Public Health Inspectors (PHIs) are tasked with detecting and eliminating such water collection areas. However, they face the problem of detecting potential breeding sites in hard-to-reach areas. With the technological development, the drones come as one of the most cost effective unmanned vehicles to access the places that a man cannot access. This paper presents a novel approach for identifying mosquito breeding areas via drone images through the distinct coloration of those areas by applying the Histogram of Oriented Gradients (HOG) algorithm. Using the HOG algorithm, we detect potential water retention areas using drone images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stalwart: a Predictable Reliable Adaptive and Low-latency Real-time Wireless Protocol SmartLight: Light-weight 3D Indoor Localization Using a Single LED Lamp UWB-based Single-anchor Low-cost Indoor Localization System Hierarchical Subchannel Allocation for Mode-3 Vehicle-to-Vehicle Sidelink Communications Taming Link-layer Heterogeneity in IoT through Interleaving Multiple Link-Layers over a Single Radio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1