智能手机上的道路标志检测,交通安全

Carrie Pritt
{"title":"智能手机上的道路标志检测,交通安全","authors":"Carrie Pritt","doi":"10.1109/AIPR.2014.7041927","DOIUrl":null,"url":null,"abstract":"The goal of this work is the development of a low-cost driver assistance system that runs on an ordinary smartphone. It uses computer vision techniques and multiple-resolution template matching to detect speed limit signs and alert the driver if the speed limit is exceeded. It inputs an image of the sign to be detected and creates a set of multiple-resolution templates. It also inputs photographs of the road from the smartphone camera at regular intervals and generates multiple-resolution images from the photographs. In the first step of processing, fast filters restrict the focus of attention to smaller areas of the photographs where signs are likely to be present. In the second step, the system matches the templates against the photographs using fast normalized cross correlation to detect speed limit signs. The multiple resolutions enable this approach to detect signs at different scales. In the third step, the system recognizes the sign by matching a series of annotated speed templates to the image at the position and scale that were determined by the detection step. It compares the speed limit with the actual vehicle speed as computed from the smartphone GPS device and issues warnings to the driver as necessary. The system is implemented as an Android application that runs on an ordinary smartphone as part of a client-server architecture. It processes photos at a rate of 1 Hz with a probability of detection of 0.93 at the 95% confidence level and a false alarm rate of 0.0007, or one false classification every 25 min.","PeriodicalId":210982,"journal":{"name":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"269 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Road sign detection on a smartphone for traffic safety\",\"authors\":\"Carrie Pritt\",\"doi\":\"10.1109/AIPR.2014.7041927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this work is the development of a low-cost driver assistance system that runs on an ordinary smartphone. It uses computer vision techniques and multiple-resolution template matching to detect speed limit signs and alert the driver if the speed limit is exceeded. It inputs an image of the sign to be detected and creates a set of multiple-resolution templates. It also inputs photographs of the road from the smartphone camera at regular intervals and generates multiple-resolution images from the photographs. In the first step of processing, fast filters restrict the focus of attention to smaller areas of the photographs where signs are likely to be present. In the second step, the system matches the templates against the photographs using fast normalized cross correlation to detect speed limit signs. The multiple resolutions enable this approach to detect signs at different scales. In the third step, the system recognizes the sign by matching a series of annotated speed templates to the image at the position and scale that were determined by the detection step. It compares the speed limit with the actual vehicle speed as computed from the smartphone GPS device and issues warnings to the driver as necessary. The system is implemented as an Android application that runs on an ordinary smartphone as part of a client-server architecture. It processes photos at a rate of 1 Hz with a probability of detection of 0.93 at the 95% confidence level and a false alarm rate of 0.0007, or one false classification every 25 min.\",\"PeriodicalId\":210982,\"journal\":{\"name\":\"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"269 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2014.7041927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2014.7041927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

这项工作的目标是开发一种运行在普通智能手机上的低成本驾驶员辅助系统。它使用计算机视觉技术和多分辨率模板匹配来检测限速标志,并在超过限速时提醒驾驶员。它输入要检测的标志的图像并创建一组多分辨率模板。它还定期输入智能手机摄像头拍摄的道路照片,并根据照片生成多分辨率图像。在处理的第一步,快速过滤器将注意力限制在照片中可能存在迹象的较小区域。在第二步中,系统使用快速归一化互相关将模板与照片进行匹配以检测限速标志。多种分辨率使这种方法能够检测不同尺度的标志。在第三步中,系统通过将一系列带注释的速度模板与检测步骤确定的位置和比例的图像匹配来识别标志。它会将车速限制与从智能手机GPS设备计算出的实际车速进行比较,并在必要时向驾驶员发出警告。该系统作为一个Android应用程序实现,作为客户机-服务器架构的一部分运行在普通智能手机上。它以1 Hz的速率处理照片,在95%的置信度下检测概率为0.93,误报率为0.0007,或每25分钟进行一次错误分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Road sign detection on a smartphone for traffic safety
The goal of this work is the development of a low-cost driver assistance system that runs on an ordinary smartphone. It uses computer vision techniques and multiple-resolution template matching to detect speed limit signs and alert the driver if the speed limit is exceeded. It inputs an image of the sign to be detected and creates a set of multiple-resolution templates. It also inputs photographs of the road from the smartphone camera at regular intervals and generates multiple-resolution images from the photographs. In the first step of processing, fast filters restrict the focus of attention to smaller areas of the photographs where signs are likely to be present. In the second step, the system matches the templates against the photographs using fast normalized cross correlation to detect speed limit signs. The multiple resolutions enable this approach to detect signs at different scales. In the third step, the system recognizes the sign by matching a series of annotated speed templates to the image at the position and scale that were determined by the detection step. It compares the speed limit with the actual vehicle speed as computed from the smartphone GPS device and issues warnings to the driver as necessary. The system is implemented as an Android application that runs on an ordinary smartphone as part of a client-server architecture. It processes photos at a rate of 1 Hz with a probability of detection of 0.93 at the 95% confidence level and a false alarm rate of 0.0007, or one false classification every 25 min.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning tree-structured approximations for conditional random fields Multi-resolution deblurring High dynamic range (HDR) video processing for the exploitation of high bit-depth sensors in human-monitored surveillance Extension of no-reference deblurring methods through image fusion 3D sparse point reconstructions of atmospheric nuclear detonations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1