利用深度学习的机械加工特征预测增材制造零件的构建方向

Aliakbar Eranpurwala, S. E. Ghiasian, K. Lewis
{"title":"利用深度学习的机械加工特征预测增材制造零件的构建方向","authors":"Aliakbar Eranpurwala, S. E. Ghiasian, K. Lewis","doi":"10.1115/detc2020-22043","DOIUrl":null,"url":null,"abstract":"\n Additive Manufacturing (AM) is a revolutionary development that is being viewed as a core technology for fabricating current and future engineered products. While AM has many advantages over subtractive manufacturing processes, one of the primary limitations of AM is to swiftly evaluate precise part build orientations. Current algorithms are either computationally expensive or provide multiple alternative orientations, requiring additional decision tradeoffs. To hasten the process of finding accurate part build orientation, a data-driven predictive model is introduced by mapping standard machining features to build orientation angles. A combinatory learning algorithm of classification and regression is utilized for the prediction of build orientation. The framework uses 54,000 voxelized standard tessellated language (STL) files as input to train the classification algorithm for eighteen standard machining features using a nine-layer 3D Convolutional Neural Network (CNN). Additionally, a multi-machining feature dataset of 1000 voxelized STL files are evaluated in parallel by performing quaternion rotations to obtain build orientation angles based on minimization of support structure volume. A regression model is then developed to establish a relationship between the machining features and orientation angles to predict optimal build orientation for new parts.","PeriodicalId":415040,"journal":{"name":"Volume 11A: 46th Design Automation Conference (DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predicting Build Orientation of Additively Manufactured Parts With Mechanical Machining Features Using Deep Learning\",\"authors\":\"Aliakbar Eranpurwala, S. E. Ghiasian, K. Lewis\",\"doi\":\"10.1115/detc2020-22043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Additive Manufacturing (AM) is a revolutionary development that is being viewed as a core technology for fabricating current and future engineered products. While AM has many advantages over subtractive manufacturing processes, one of the primary limitations of AM is to swiftly evaluate precise part build orientations. Current algorithms are either computationally expensive or provide multiple alternative orientations, requiring additional decision tradeoffs. To hasten the process of finding accurate part build orientation, a data-driven predictive model is introduced by mapping standard machining features to build orientation angles. A combinatory learning algorithm of classification and regression is utilized for the prediction of build orientation. The framework uses 54,000 voxelized standard tessellated language (STL) files as input to train the classification algorithm for eighteen standard machining features using a nine-layer 3D Convolutional Neural Network (CNN). Additionally, a multi-machining feature dataset of 1000 voxelized STL files are evaluated in parallel by performing quaternion rotations to obtain build orientation angles based on minimization of support structure volume. A regression model is then developed to establish a relationship between the machining features and orientation angles to predict optimal build orientation for new parts.\",\"PeriodicalId\":415040,\"journal\":{\"name\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11A: 46th Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

增材制造(AM)是一项革命性的发展,被视为制造当前和未来工程产品的核心技术。虽然增材制造与减法制造工艺相比具有许多优势,但增材制造的主要限制之一是快速评估精确的零件构建方向。当前的算法要么计算成本高,要么提供多个可选方向,需要额外的决策权衡。为加快零件构建精度,提出了一种基于数据驱动的预测模型,通过映射标准加工特征来构建面向角。采用分类与回归相结合的学习算法对建筑方位进行预测。该框架使用54,000个体素化标准镶嵌语言(STL)文件作为输入,使用九层3D卷积神经网络(CNN)训练18个标准加工特征的分类算法。此外,通过四元数旋转并行评估1000个体素化STL文件的多加工特征数据集,以最小化支撑结构体积为基础获得构建方向角。然后建立了一个回归模型来建立加工特征与取向角之间的关系,以预测新零件的最佳构建方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Build Orientation of Additively Manufactured Parts With Mechanical Machining Features Using Deep Learning
Additive Manufacturing (AM) is a revolutionary development that is being viewed as a core technology for fabricating current and future engineered products. While AM has many advantages over subtractive manufacturing processes, one of the primary limitations of AM is to swiftly evaluate precise part build orientations. Current algorithms are either computationally expensive or provide multiple alternative orientations, requiring additional decision tradeoffs. To hasten the process of finding accurate part build orientation, a data-driven predictive model is introduced by mapping standard machining features to build orientation angles. A combinatory learning algorithm of classification and regression is utilized for the prediction of build orientation. The framework uses 54,000 voxelized standard tessellated language (STL) files as input to train the classification algorithm for eighteen standard machining features using a nine-layer 3D Convolutional Neural Network (CNN). Additionally, a multi-machining feature dataset of 1000 voxelized STL files are evaluated in parallel by performing quaternion rotations to obtain build orientation angles based on minimization of support structure volume. A regression model is then developed to establish a relationship between the machining features and orientation angles to predict optimal build orientation for new parts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extrapolation With Gaussian Random Processes and Evolutionary Programming Design and Optimization of Functionally Graded Superelastic NiTi Stents Topic Modeling and Sentiment Analysis of Social Media Data to Drive Experiential Redesign Risk-Averse Optimization for Resilience Enhancement Under Uncertainty Multi-Objective Design Exploration of a Canine Ventriculoperitoneal Shunt for Hydrocephalus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1