基于可视化演示的改进逆向映射控制蜂群

K. K. Budhraja, T. Oates
{"title":"基于可视化演示的改进逆向映射控制蜂群","authors":"K. K. Budhraja, T. Oates","doi":"10.1109/FAS-W.2018.00037","DOIUrl":null,"url":null,"abstract":"Agent-based modeling is a paradigm of modeling dynamic systems of interacting agents that are individually governed by specified behavioral rules. Training a model of such agents to produce an emergent behavior by specification of the emergent (as opposed to agent) behavior is easier from a demonstration perspective. Without the involvement of manual behavior specification via code or reliance on a defined taxonomy of possible behaviors, the demonstrator specifies spatial motion of the agents over time, and retrieves agent-level parameters required to execute that motion. A framework for reproducing emergent behavior, given an abstract demonstration, is discussed in existing work. Our work extends that framework by refining the data that is aggregated to produce the agent-level parameters that the framework provides to the demonstrator. This is done using pruning and outlier detection based on information that is intrinsic to those data points (their source). Using pruning and outlier detection shows potential to refine the aggregation data to a fraction of its size, while maintaining or potentially improving performance in replication of demonstrations.","PeriodicalId":164903,"journal":{"name":"2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS*W)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improved Reverse Mapping for Controlling Swarms by Visual Demonstration\",\"authors\":\"K. K. Budhraja, T. Oates\",\"doi\":\"10.1109/FAS-W.2018.00037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agent-based modeling is a paradigm of modeling dynamic systems of interacting agents that are individually governed by specified behavioral rules. Training a model of such agents to produce an emergent behavior by specification of the emergent (as opposed to agent) behavior is easier from a demonstration perspective. Without the involvement of manual behavior specification via code or reliance on a defined taxonomy of possible behaviors, the demonstrator specifies spatial motion of the agents over time, and retrieves agent-level parameters required to execute that motion. A framework for reproducing emergent behavior, given an abstract demonstration, is discussed in existing work. Our work extends that framework by refining the data that is aggregated to produce the agent-level parameters that the framework provides to the demonstrator. This is done using pruning and outlier detection based on information that is intrinsic to those data points (their source). Using pruning and outlier detection shows potential to refine the aggregation data to a fraction of its size, while maintaining or potentially improving performance in replication of demonstrations.\",\"PeriodicalId\":164903,\"journal\":{\"name\":\"2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS*W)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS*W)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FAS-W.2018.00037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS*W)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FAS-W.2018.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于代理的建模是一种建模由相互作用的代理组成的动态系统的范例,这些代理分别受指定的行为规则控制。从演示的角度来看,通过规范突发(与代理相反)行为来训练此类代理的模型以产生突发行为更容易。无需通过代码进行手动行为规范,也无需依赖已定义的可能行为分类,演示者可以指定代理随时间的空间运动,并检索执行该运动所需的代理级参数。在现有的工作中,讨论了一个抽象的再现突现行为的框架。我们的工作通过细化聚合的数据来扩展框架,生成框架提供给演示者的代理级参数。这是使用基于这些数据点(它们的源)固有信息的修剪和离群值检测来完成的。使用修剪和离群值检测可以将聚合数据细化到其大小的一小部分,同时保持或可能提高演示复制的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved Reverse Mapping for Controlling Swarms by Visual Demonstration
Agent-based modeling is a paradigm of modeling dynamic systems of interacting agents that are individually governed by specified behavioral rules. Training a model of such agents to produce an emergent behavior by specification of the emergent (as opposed to agent) behavior is easier from a demonstration perspective. Without the involvement of manual behavior specification via code or reliance on a defined taxonomy of possible behaviors, the demonstrator specifies spatial motion of the agents over time, and retrieves agent-level parameters required to execute that motion. A framework for reproducing emergent behavior, given an abstract demonstration, is discussed in existing work. Our work extends that framework by refining the data that is aggregated to produce the agent-level parameters that the framework provides to the demonstrator. This is done using pruning and outlier detection based on information that is intrinsic to those data points (their source). Using pruning and outlier detection shows potential to refine the aggregation data to a fraction of its size, while maintaining or potentially improving performance in replication of demonstrations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Self-Adaptive Systems with Hierarchical Decentralised Control DymGPU: Dynamic Memory Management for Sharing GPUs in Virtualized Clouds Reactive and Adaptive Security Monitoring in Cloud Computing Aspects of Measuring and Evaluating the Integration Status of a (Sub-)System at Runtime Efficient Classification of Application Characteristics by Using Hardware Performance Counters with Data Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1