自适应视频流中高效编码的绿色视频复杂度分析

V. V. Menon, Christian Feldmann, K. Schoeffmann, M. Ghanbari, C. Timmerer
{"title":"自适应视频流中高效编码的绿色视频复杂度分析","authors":"V. V. Menon, Christian Feldmann, K. Schoeffmann, M. Ghanbari, C. Timmerer","doi":"10.1145/3593908.3593942","DOIUrl":null,"url":null,"abstract":"For adaptive streaming applications, low-complexity and accurate video complexity features are necessary to analyze the video content in real time, which ensures fast and compression-efficient video streaming without disruptions. State-of-the-art video complexity features are Spatial Information (SI) and Temporal Information (TI) features which do not correlate well with the encoding parameters in adaptive streaming applications. To this light, Video Complexity Analyzer (VCA) was introduced, determining the features based on Discrete Cosine Transform (DCT)-energy. This paper presents optimizations on VCA for faster and energy-efficient video complexity analysis. Experimental results show that VCA v2.0, using eight CPU threads, Single Instruction Multiple Data (SIMD), and low-pass DCT optimization, determines seven complexity features of Ultra High Definition 8-bit videos with better accuracy at a speed of up to 292.68 fps and an energy consumption of 97.06% lower than the reference SITI implementation.","PeriodicalId":249079,"journal":{"name":"Proceedings of the First International Workshop on Green Multimedia Systems","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Green video complexity analysis for efficient encoding in Adaptive Video Streaming\",\"authors\":\"V. V. Menon, Christian Feldmann, K. Schoeffmann, M. Ghanbari, C. Timmerer\",\"doi\":\"10.1145/3593908.3593942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For adaptive streaming applications, low-complexity and accurate video complexity features are necessary to analyze the video content in real time, which ensures fast and compression-efficient video streaming without disruptions. State-of-the-art video complexity features are Spatial Information (SI) and Temporal Information (TI) features which do not correlate well with the encoding parameters in adaptive streaming applications. To this light, Video Complexity Analyzer (VCA) was introduced, determining the features based on Discrete Cosine Transform (DCT)-energy. This paper presents optimizations on VCA for faster and energy-efficient video complexity analysis. Experimental results show that VCA v2.0, using eight CPU threads, Single Instruction Multiple Data (SIMD), and low-pass DCT optimization, determines seven complexity features of Ultra High Definition 8-bit videos with better accuracy at a speed of up to 292.68 fps and an energy consumption of 97.06% lower than the reference SITI implementation.\",\"PeriodicalId\":249079,\"journal\":{\"name\":\"Proceedings of the First International Workshop on Green Multimedia Systems\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First International Workshop on Green Multimedia Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3593908.3593942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Workshop on Green Multimedia Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3593908.3593942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对于自适应流媒体应用,需要低复杂度和精确的视频复杂度特征来实时分析视频内容,以确保快速、高效压缩的视频流不中断。目前最先进的视频复杂性特征是空间信息(SI)和时间信息(TI)特征,在自适应流媒体应用中,它们与编码参数的关系不太好。为此,引入了视频复杂度分析仪(VCA),基于离散余弦变换(DCT)能量来确定特征。本文对VCA进行了优化,以实现更快、更节能的视频复杂度分析。实验结果表明,VCA v2.0采用8个CPU线程、单指令多数据(SIMD)和低通DCT优化,确定了超高清8位视频的7个复杂度特征,精度更高,速度高达292.68 fps,能耗比参考SITI实现低97.06%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Green video complexity analysis for efficient encoding in Adaptive Video Streaming
For adaptive streaming applications, low-complexity and accurate video complexity features are necessary to analyze the video content in real time, which ensures fast and compression-efficient video streaming without disruptions. State-of-the-art video complexity features are Spatial Information (SI) and Temporal Information (TI) features which do not correlate well with the encoding parameters in adaptive streaming applications. To this light, Video Complexity Analyzer (VCA) was introduced, determining the features based on Discrete Cosine Transform (DCT)-energy. This paper presents optimizations on VCA for faster and energy-efficient video complexity analysis. Experimental results show that VCA v2.0, using eight CPU threads, Single Instruction Multiple Data (SIMD), and low-pass DCT optimization, determines seven complexity features of Ultra High Definition 8-bit videos with better accuracy at a speed of up to 292.68 fps and an energy consumption of 97.06% lower than the reference SITI implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Studying Green Video Distribution as a Whole End-to-end Optimizations for Green Streaming Audience Aware Streaming: New Dynamics in OTT distribution Video Decoding Energy Reduction Using Temporal-Domain Filtering The analysis of DASH manifest optimizations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1