云中的数据密集型超级计算:卫星图像的全球分析

Michael S. Warren, S. Skillman, R. Chartrand, T. Kelton, R. Keisler, D. Raleigh, M. Turk
{"title":"云中的数据密集型超级计算:卫星图像的全球分析","authors":"Michael S. Warren, S. Skillman, R. Chartrand, T. Kelton, R. Keisler, D. Raleigh, M. Turk","doi":"10.1109/DataCloud.2016.7","DOIUrl":null,"url":null,"abstract":"We present our experiences using cloud computing to support data-intensive analytics on satellite imagery for commercial applications. Drawing from our background in highperformance computing, we draw parallels between the early days of clustered computing systems and the current state of cloud computing and its potential to disrupt the HPC market. Using our own virtual file system layer on top of cloud remote object storage, we demonstrate aggregate read bandwidth of 230 gigabytes per second using 512 Google Compute Engine (GCE) nodes accessing a USA multi-region standard storage bucket. This figure is comparable to the best HPC storage systems in existence. We also present several of our application results, including the identification of field boundaries in Ukraine, and the generation of a global cloud-free base layer from Landsat imagery.","PeriodicalId":325593,"journal":{"name":"2016 Seventh International Workshop on Data-Intensive Computing in the Clouds (DataCloud)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Data-Intensive Supercomputing in the Cloud: Global Analytics for Satellite Imagery\",\"authors\":\"Michael S. Warren, S. Skillman, R. Chartrand, T. Kelton, R. Keisler, D. Raleigh, M. Turk\",\"doi\":\"10.1109/DataCloud.2016.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present our experiences using cloud computing to support data-intensive analytics on satellite imagery for commercial applications. Drawing from our background in highperformance computing, we draw parallels between the early days of clustered computing systems and the current state of cloud computing and its potential to disrupt the HPC market. Using our own virtual file system layer on top of cloud remote object storage, we demonstrate aggregate read bandwidth of 230 gigabytes per second using 512 Google Compute Engine (GCE) nodes accessing a USA multi-region standard storage bucket. This figure is comparable to the best HPC storage systems in existence. We also present several of our application results, including the identification of field boundaries in Ukraine, and the generation of a global cloud-free base layer from Landsat imagery.\",\"PeriodicalId\":325593,\"journal\":{\"name\":\"2016 Seventh International Workshop on Data-Intensive Computing in the Clouds (DataCloud)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Seventh International Workshop on Data-Intensive Computing in the Clouds (DataCloud)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DataCloud.2016.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Seventh International Workshop on Data-Intensive Computing in the Clouds (DataCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DataCloud.2016.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们介绍了我们使用云计算支持商业应用卫星图像数据密集型分析的经验。根据我们在高性能计算方面的背景,我们将早期的集群计算系统与当前的云计算状态及其颠覆高性能计算市场的潜力相提并论。在云远程对象存储之上使用我们自己的虚拟文件系统层,我们演示了使用512个Google计算引擎(GCE)节点访问美国多区域标准存储桶的每秒230千兆字节的总读取带宽。这个数字可以与现有最好的高性能计算存储系统相媲美。我们还介绍了我们的几个应用结果,包括乌克兰野外边界的识别,以及从Landsat图像生成全球无云基础层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-Intensive Supercomputing in the Cloud: Global Analytics for Satellite Imagery
We present our experiences using cloud computing to support data-intensive analytics on satellite imagery for commercial applications. Drawing from our background in highperformance computing, we draw parallels between the early days of clustered computing systems and the current state of cloud computing and its potential to disrupt the HPC market. Using our own virtual file system layer on top of cloud remote object storage, we demonstrate aggregate read bandwidth of 230 gigabytes per second using 512 Google Compute Engine (GCE) nodes accessing a USA multi-region standard storage bucket. This figure is comparable to the best HPC storage systems in existence. We also present several of our application results, including the identification of field boundaries in Ukraine, and the generation of a global cloud-free base layer from Landsat imagery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Data-Aware Task Dispatching for Batch Queuing Systems A Multi-tenant Fair Share Approach to Full-text Search Engine An Efficient Parallel Implementation of a Light-weight Data Privacy Method for Mobile Cloud Users Asterism: Pegasus and Dispel4py Hybrid Workflows for Data-Intensive Science Data-Intensive Supercomputing in the Cloud: Global Analytics for Satellite Imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1