{"title":"智能和基于sic的驱动系统的数字孪生","authors":"Xinjun Liu, M. Hofmann, F. Streit, M. Maerz","doi":"10.1109/EDPC53547.2021.9684201","DOIUrl":null,"url":null,"abstract":"Reliable and efficient electric motor and inverter solutions are essential for a variety of applications. Validated digital twin, based on a co-simulation of all drive components, can contribute to these development goals at an early stage of development. Especially for modern SiC-based drive systems, these tools help to analyze the impact of fast-switching inverters and their higher switching frequencies. Within this paper, the development, the experimental validation and the use of a digital twin for an automotive traction drive system is described. The digital twin combines a FEM -based electric machine model with a SiC-inverter circuit simulation. The analyzed drive system consists of an interior permanent magnet synchronous machine (IPMSM) with 175 kW and an 800 V SiC-based inverter. It is shown that the described co-simulation tool leads to more accurate efficiency and overall machine behavior predictions.","PeriodicalId":350594,"journal":{"name":"2021 11th International Electric Drives Production Conference (EDPC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Digital Twin for Intelligent and SiC-based Drive Systems\",\"authors\":\"Xinjun Liu, M. Hofmann, F. Streit, M. Maerz\",\"doi\":\"10.1109/EDPC53547.2021.9684201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable and efficient electric motor and inverter solutions are essential for a variety of applications. Validated digital twin, based on a co-simulation of all drive components, can contribute to these development goals at an early stage of development. Especially for modern SiC-based drive systems, these tools help to analyze the impact of fast-switching inverters and their higher switching frequencies. Within this paper, the development, the experimental validation and the use of a digital twin for an automotive traction drive system is described. The digital twin combines a FEM -based electric machine model with a SiC-inverter circuit simulation. The analyzed drive system consists of an interior permanent magnet synchronous machine (IPMSM) with 175 kW and an 800 V SiC-based inverter. It is shown that the described co-simulation tool leads to more accurate efficiency and overall machine behavior predictions.\",\"PeriodicalId\":350594,\"journal\":{\"name\":\"2021 11th International Electric Drives Production Conference (EDPC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 11th International Electric Drives Production Conference (EDPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDPC53547.2021.9684201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Electric Drives Production Conference (EDPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDPC53547.2021.9684201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Digital Twin for Intelligent and SiC-based Drive Systems
Reliable and efficient electric motor and inverter solutions are essential for a variety of applications. Validated digital twin, based on a co-simulation of all drive components, can contribute to these development goals at an early stage of development. Especially for modern SiC-based drive systems, these tools help to analyze the impact of fast-switching inverters and their higher switching frequencies. Within this paper, the development, the experimental validation and the use of a digital twin for an automotive traction drive system is described. The digital twin combines a FEM -based electric machine model with a SiC-inverter circuit simulation. The analyzed drive system consists of an interior permanent magnet synchronous machine (IPMSM) with 175 kW and an 800 V SiC-based inverter. It is shown that the described co-simulation tool leads to more accurate efficiency and overall machine behavior predictions.