基于FPGA的三维图像处理偏转算法执行时间优化扩展架构

Faraz Bhatti, Thomas Greiner, M. Heizmann, Mathias Ziebarth
{"title":"基于FPGA的三维图像处理偏转算法执行时间优化扩展架构","authors":"Faraz Bhatti, Thomas Greiner, M. Heizmann, Mathias Ziebarth","doi":"10.1109/ICSIPA.2017.8120617","DOIUrl":null,"url":null,"abstract":"The use of image processing is being accelerated over the past years in areas, including artificial intelligence, medical field, remote sensing and microscopic imaging. For 3D reconstruction of the objects, deflectometry is used to collect topographic information of surfaces. Due to computationally intensive nature of the algorithm, the execution time is one of the challenges faced by the deflectometry. In this paper, an extended FPGA based architecture is proposed to execute and improve the performance of deflectometry algorithm. The whole process consists of several stages, including initialization, acquisition and processing of data. The main idea is to utilize the optimizations e.g., pipelining, parallelization, provided by an FPGA to improve the performance of the algorithm. However, the advantage of parallelization can only be utilized if the associated algorithm contains the number of tasks, which can run independent of each other. For this reason, the deflectometry algorithm is adapted to the architecture of an FPGA to improve the performance. After successful realization of proposed architecture, the results have shown that performance is significantly improved in terms of execution time. Moreover, a rapid design development methodology is employed to decrease the prototyping time.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An extended architecture to optimize execution time of 3D image processing deflectometry algorithm using FPGA\",\"authors\":\"Faraz Bhatti, Thomas Greiner, M. Heizmann, Mathias Ziebarth\",\"doi\":\"10.1109/ICSIPA.2017.8120617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of image processing is being accelerated over the past years in areas, including artificial intelligence, medical field, remote sensing and microscopic imaging. For 3D reconstruction of the objects, deflectometry is used to collect topographic information of surfaces. Due to computationally intensive nature of the algorithm, the execution time is one of the challenges faced by the deflectometry. In this paper, an extended FPGA based architecture is proposed to execute and improve the performance of deflectometry algorithm. The whole process consists of several stages, including initialization, acquisition and processing of data. The main idea is to utilize the optimizations e.g., pipelining, parallelization, provided by an FPGA to improve the performance of the algorithm. However, the advantage of parallelization can only be utilized if the associated algorithm contains the number of tasks, which can run independent of each other. For this reason, the deflectometry algorithm is adapted to the architecture of an FPGA to improve the performance. After successful realization of proposed architecture, the results have shown that performance is significantly improved in terms of execution time. Moreover, a rapid design development methodology is employed to decrease the prototyping time.\",\"PeriodicalId\":268112,\"journal\":{\"name\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2017.8120617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

过去几年,在人工智能、医疗领域、遥感和显微成像等领域,图像处理的使用正在加速。对于物体的三维重建,采用偏转法收集表面的地形信息。由于算法的计算量大,执行时间是偏转测量所面临的挑战之一。本文提出了一种基于FPGA的扩展架构来执行偏转测量算法并提高其性能。整个过程包括初始化、数据采集和数据处理几个阶段。主要思想是利用FPGA提供的优化,例如流水线,并行化,以提高算法的性能。然而,只有当相关算法包含一定数量的任务时,并行化的优势才能被利用,这些任务可以相互独立地运行。因此,偏转测量算法适应FPGA的结构,以提高性能。在成功实现了所提出的体系结构之后,结果表明,在执行时间方面,性能得到了显着提高。此外,采用快速设计开发方法减少了原型时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An extended architecture to optimize execution time of 3D image processing deflectometry algorithm using FPGA
The use of image processing is being accelerated over the past years in areas, including artificial intelligence, medical field, remote sensing and microscopic imaging. For 3D reconstruction of the objects, deflectometry is used to collect topographic information of surfaces. Due to computationally intensive nature of the algorithm, the execution time is one of the challenges faced by the deflectometry. In this paper, an extended FPGA based architecture is proposed to execute and improve the performance of deflectometry algorithm. The whole process consists of several stages, including initialization, acquisition and processing of data. The main idea is to utilize the optimizations e.g., pipelining, parallelization, provided by an FPGA to improve the performance of the algorithm. However, the advantage of parallelization can only be utilized if the associated algorithm contains the number of tasks, which can run independent of each other. For this reason, the deflectometry algorithm is adapted to the architecture of an FPGA to improve the performance. After successful realization of proposed architecture, the results have shown that performance is significantly improved in terms of execution time. Moreover, a rapid design development methodology is employed to decrease the prototyping time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced forensic speaker verification using multi-run ICA in the presence of environmental noise and reverberation conditions A real-time multi-class multi-object tracker using YOLOv2 Hybrid neural network and regression tree ensemble pruned by simulated annealing for virtual flow metering application Hybrid DWT and MFCC feature warping for noisy forensic speaker verification in room reverberation A deep architecture for face recognition based on multiple feature extraction techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1