Optim、Nleqslv和MaxLik在某些回归模型参数估计中的比较

Buu-Chau Truong, Van-Buol Nguyen, Hoang-Vinh Truong, T. Ho
{"title":"Optim、Nleqslv和MaxLik在某些回归模型参数估计中的比较","authors":"Buu-Chau Truong, Van-Buol Nguyen, Hoang-Vinh Truong, T. Ho","doi":"10.25073/JAEC.201934.262","DOIUrl":null,"url":null,"abstract":"Our main goal in this article is to present the approaches and examples of three functions in R consist of optim, nleqslv and maxLik function to detect the optimization solution of the estimating function in the regression models. We then compare the results with numerous sample sizes (n=150, 300 and 500), the execution time of R code, as well as Normal Q Q plots of three approaches through some of regression models such as the zeroin ated Binomial (ZIB) regression model, logistic regression model, the zero-in ated Poisson (ZIP) regression model and the zero-in ated Bernoulli (ZIBer) regression model. Finally, we discuss potential research directions in the coming times.","PeriodicalId":250655,"journal":{"name":"J. Adv. Eng. Comput.","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Comparison of Optim, Nleqslv and MaxLik to Estimate Parameters in Some of Regression Models\",\"authors\":\"Buu-Chau Truong, Van-Buol Nguyen, Hoang-Vinh Truong, T. Ho\",\"doi\":\"10.25073/JAEC.201934.262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our main goal in this article is to present the approaches and examples of three functions in R consist of optim, nleqslv and maxLik function to detect the optimization solution of the estimating function in the regression models. We then compare the results with numerous sample sizes (n=150, 300 and 500), the execution time of R code, as well as Normal Q Q plots of three approaches through some of regression models such as the zeroin ated Binomial (ZIB) regression model, logistic regression model, the zero-in ated Poisson (ZIP) regression model and the zero-in ated Bernoulli (ZIBer) regression model. Finally, we discuss potential research directions in the coming times.\",\"PeriodicalId\":250655,\"journal\":{\"name\":\"J. Adv. Eng. Comput.\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Adv. Eng. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25073/JAEC.201934.262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Adv. Eng. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/JAEC.201934.262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文的主要目的是介绍在R中使用optim、nleqslv和maxLik函数来检测回归模型中估计函数的最优解的方法和示例。然后,我们通过零位二项回归模型(ZIB)、逻辑回归模型、零位泊松(ZIP)回归模型和零位伯努利(ZIBer)回归模型等回归模型,将结果与不同样本量(n= 150,300和500)、R代码执行时间以及三种方法的正态Q Q图进行比较。最后,对今后的研究方向进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Optim, Nleqslv and MaxLik to Estimate Parameters in Some of Regression Models
Our main goal in this article is to present the approaches and examples of three functions in R consist of optim, nleqslv and maxLik function to detect the optimization solution of the estimating function in the regression models. We then compare the results with numerous sample sizes (n=150, 300 and 500), the execution time of R code, as well as Normal Q Q plots of three approaches through some of regression models such as the zeroin ated Binomial (ZIB) regression model, logistic regression model, the zero-in ated Poisson (ZIP) regression model and the zero-in ated Bernoulli (ZIBer) regression model. Finally, we discuss potential research directions in the coming times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incremental Ensemble Learning Model for Imbalanced Data: a Case Study of Credit Scoring Comparing the Performance of Molecular Docking Tools for HIV-1 Protease Inhibitors Determinants of Net Interest Margin in Commercial Banks in Viet Nam Development of a Laboratory-Scale Steam Boiler for Polyurethane (Foam) Waste Recycling Machine Development of Decentralized Speed Controllers for a Differential Drive Wheel Mobile Robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1