多臂强盗代理联合学习的自动协作选择

Hannes Larsson, Hassam Riaz, Selim Ickin
{"title":"多臂强盗代理联合学习的自动协作选择","authors":"Hannes Larsson, Hassam Riaz, Selim Ickin","doi":"10.1145/3472735.3473388","DOIUrl":null,"url":null,"abstract":"Rapid change in sensitive behaviour and profile of distributed mobile network elements necessitates privacy preserving distributed learning mechanism such as Federated Learning. Moreover, this mechanism needs to be robust that seamlessly sustains the jointly trained model accuracy. In order to provide a automated management of the learning process in FL on datasets that are not independently and identically distributed (non-iid), we propose a Multi-Arm Bandit (MAB) based method that helps the federation to select the nodes that benefits the overall model. This automated selection of the training nodes throughout each round yielded an improvement in accuracy, while decreasing network footprint.","PeriodicalId":130203,"journal":{"name":"Proceedings of the 4th FlexNets Workshop on Flexible Networks Artificial Intelligence Supported Network Flexibility and Agility","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automated Collaborator Selection for Federated Learning with Multi-armed Bandit Agents\",\"authors\":\"Hannes Larsson, Hassam Riaz, Selim Ickin\",\"doi\":\"10.1145/3472735.3473388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid change in sensitive behaviour and profile of distributed mobile network elements necessitates privacy preserving distributed learning mechanism such as Federated Learning. Moreover, this mechanism needs to be robust that seamlessly sustains the jointly trained model accuracy. In order to provide a automated management of the learning process in FL on datasets that are not independently and identically distributed (non-iid), we propose a Multi-Arm Bandit (MAB) based method that helps the federation to select the nodes that benefits the overall model. This automated selection of the training nodes throughout each round yielded an improvement in accuracy, while decreasing network footprint.\",\"PeriodicalId\":130203,\"journal\":{\"name\":\"Proceedings of the 4th FlexNets Workshop on Flexible Networks Artificial Intelligence Supported Network Flexibility and Agility\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th FlexNets Workshop on Flexible Networks Artificial Intelligence Supported Network Flexibility and Agility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3472735.3473388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th FlexNets Workshop on Flexible Networks Artificial Intelligence Supported Network Flexibility and Agility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3472735.3473388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

分布式移动网络元素的敏感行为和特征的快速变化需要保护隐私的分布式学习机制,如联邦学习。此外,该机制需要具有鲁棒性,以无缝地维持联合训练的模型准确性。为了在非独立相同分布(non-iid)的数据集上提供FL学习过程的自动化管理,我们提出了一种基于多臂班迪(Multi-Arm Bandit, MAB)的方法,帮助联邦选择对整体模型有利的节点。这种在每轮中自动选择训练节点的方法提高了准确率,同时减少了网络占用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated Collaborator Selection for Federated Learning with Multi-armed Bandit Agents
Rapid change in sensitive behaviour and profile of distributed mobile network elements necessitates privacy preserving distributed learning mechanism such as Federated Learning. Moreover, this mechanism needs to be robust that seamlessly sustains the jointly trained model accuracy. In order to provide a automated management of the learning process in FL on datasets that are not independently and identically distributed (non-iid), we propose a Multi-Arm Bandit (MAB) based method that helps the federation to select the nodes that benefits the overall model. This automated selection of the training nodes throughout each round yielded an improvement in accuracy, while decreasing network footprint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FedRAN Automated Collaborator Selection for Federated Learning with Multi-armed Bandit Agents Reinforcement Learning and Energy-Aware Routing AI-driven Closed-loop Automation in 5G and beyond Mobile Networks Recommending Changes on QoE Factors with Conditional Variational AutoEncoder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1