{"title":"介绍伯努利CUSUM","authors":"S. Crowder","doi":"10.1109/RAM.2017.7889762","DOIUrl":null,"url":null,"abstract":"The Bernoulli CUSUM (BC) provides a moving window of process performance and is the quickest control chart to detect small increases in fraction defective. The Bernoulli CUSUM designs presented here require 2, 3, or 4 failures in a moving window to produce a signal. The run length distribution provides insight into the properties of the BC beyond the Average or Median Run length. A retrospective analysis of electronic component pass/fail data using the BC suggested that a problem may have been present during previous production. Subsequent production used the BC for real time process performance feedback.","PeriodicalId":138871,"journal":{"name":"2017 Annual Reliability and Maintainability Symposium (RAMS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An introduction to the Bernoulli CUSUM\",\"authors\":\"S. Crowder\",\"doi\":\"10.1109/RAM.2017.7889762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Bernoulli CUSUM (BC) provides a moving window of process performance and is the quickest control chart to detect small increases in fraction defective. The Bernoulli CUSUM designs presented here require 2, 3, or 4 failures in a moving window to produce a signal. The run length distribution provides insight into the properties of the BC beyond the Average or Median Run length. A retrospective analysis of electronic component pass/fail data using the BC suggested that a problem may have been present during previous production. Subsequent production used the BC for real time process performance feedback.\",\"PeriodicalId\":138871,\"journal\":{\"name\":\"2017 Annual Reliability and Maintainability Symposium (RAMS)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Annual Reliability and Maintainability Symposium (RAMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAM.2017.7889762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Annual Reliability and Maintainability Symposium (RAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAM.2017.7889762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Bernoulli CUSUM (BC) provides a moving window of process performance and is the quickest control chart to detect small increases in fraction defective. The Bernoulli CUSUM designs presented here require 2, 3, or 4 failures in a moving window to produce a signal. The run length distribution provides insight into the properties of the BC beyond the Average or Median Run length. A retrospective analysis of electronic component pass/fail data using the BC suggested that a problem may have been present during previous production. Subsequent production used the BC for real time process performance feedback.