利用互联网活动记录数据理解和划分移动流量——一种时空方法

Kashif Sultan, Hazrat Ali, Haris Anwaar, K. Nkabiti, Adeel Ahmad, Zhongshan Zhang
{"title":"利用互联网活动记录数据理解和划分移动流量——一种时空方法","authors":"Kashif Sultan, Hazrat Ali, Haris Anwaar, K. Nkabiti, Adeel Ahmad, Zhongshan Zhang","doi":"10.1109/WOCC.2019.8770653","DOIUrl":null,"url":null,"abstract":"The internet activity records (IARs) of a mobile cellular network posses significant information which can be exploited to identify the network's efficacy and the mobile users' behavior. In this work, we extract useful information from the IAR data and identify a healthy predictability of spatio-temporal pattern within the network traffic. The information extracted is helpful for network operators to plan effective network configuration and perform management and optimization of network's resources. We report experimentation on spatiotemporal analysis of IAR data of the Telecom Italia. Based on this, we present mobile traffic partitioning scheme. Experimental results of the proposed model is helpful in modelling and partitioning of network traffic patterns.","PeriodicalId":285172,"journal":{"name":"2019 28th Wireless and Optical Communications Conference (WOCC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Understanding and Partitioning Mobile Traffic using Internet Activity Records Data - A Spatiotemporal Approach\",\"authors\":\"Kashif Sultan, Hazrat Ali, Haris Anwaar, K. Nkabiti, Adeel Ahmad, Zhongshan Zhang\",\"doi\":\"10.1109/WOCC.2019.8770653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The internet activity records (IARs) of a mobile cellular network posses significant information which can be exploited to identify the network's efficacy and the mobile users' behavior. In this work, we extract useful information from the IAR data and identify a healthy predictability of spatio-temporal pattern within the network traffic. The information extracted is helpful for network operators to plan effective network configuration and perform management and optimization of network's resources. We report experimentation on spatiotemporal analysis of IAR data of the Telecom Italia. Based on this, we present mobile traffic partitioning scheme. Experimental results of the proposed model is helpful in modelling and partitioning of network traffic patterns.\",\"PeriodicalId\":285172,\"journal\":{\"name\":\"2019 28th Wireless and Optical Communications Conference (WOCC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 28th Wireless and Optical Communications Conference (WOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOCC.2019.8770653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 28th Wireless and Optical Communications Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC.2019.8770653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

移动蜂窝网络的互联网活动记录(IARs)具有可用于识别网络有效性和移动用户行为的重要信息。在这项工作中,我们从IAR数据中提取有用的信息,并确定网络流量中时空模式的健康可预测性。提取的信息有助于网络运营商规划有效的网络配置,对网络资源进行管理和优化。我们报告了意大利电信IAR数据的时空分析实验。在此基础上,提出了移动流量分区方案。该模型的实验结果有助于网络流量模式的建模和划分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding and Partitioning Mobile Traffic using Internet Activity Records Data - A Spatiotemporal Approach
The internet activity records (IARs) of a mobile cellular network posses significant information which can be exploited to identify the network's efficacy and the mobile users' behavior. In this work, we extract useful information from the IAR data and identify a healthy predictability of spatio-temporal pattern within the network traffic. The information extracted is helpful for network operators to plan effective network configuration and perform management and optimization of network's resources. We report experimentation on spatiotemporal analysis of IAR data of the Telecom Italia. Based on this, we present mobile traffic partitioning scheme. Experimental results of the proposed model is helpful in modelling and partitioning of network traffic patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rogue Base Station Detection Using A Machine Learning Approach Secrecy Performance Analysis for Hybrid Satellite Terrestrial Relay Networks with Multiple Eavesdroppers Challenges of Big Data Implementation in a Public Hospital Error Analysis of Single-Satellite Interference Source Positioning Based on Different Number of Co-Frequency Beams Design and Implementation of ΣΔ-3DT Based on Multi-Core DSP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1