{"title":"外差干涉测量中基于表面等离子体共振技术的生化传感器","authors":"Jyh-Shyan Chiu, Shinn-Fwu Wang, Wen-June Wang","doi":"10.1109/ICSSE.2018.8520081","DOIUrl":null,"url":null,"abstract":"In the paper, a biochemical sensor based on surface plasmon resonance technology in heterodyne interferometry is proposed. The biochemical sensor is designed as an elongated prism that is made of BK7 glass. The two-sides of the elongated prism was coated with 2nm Ti-film and 45.5nm Au-film. On the basis of surface plasma resonance principles, the proposed biochemical sensor capitalizes on the adhesion activity between test fluids and metal films. Attenuated total reflection occurs when light permeates metal films, resulting in the phase variation. Thus, the fluid properties can be determined by measuring the phase of the exit light. Because adding chemicals or agents to the proposed biosensor is unnecessary, the properties of the measured sample are unaffected during measurements. With the biochemical sensor, the refractive index of the tested medium can be obtained only by measuring the phase difference between the p-and s-polarization lights due to the multiple attenuated total-internal reflections (MATRs) effect. The photoelectric biosensor has a sensitivity of up to $2.6\\times 10^{4}$ degree/refractive index. Besides, the best resolution of the sensor can reach $3.8\\times 10^{-7}$ refractive index unit (RIU). It also features several advantages such as instantaneous measurement, high sensitivity, simple experimental architecture, and low cost.","PeriodicalId":431387,"journal":{"name":"2018 International Conference on System Science and Engineering (ICSSE)","volume":"633 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Biochemical Sensor Based on Surface Plasmon Resonance Technology in Heterodyne Interferometry\",\"authors\":\"Jyh-Shyan Chiu, Shinn-Fwu Wang, Wen-June Wang\",\"doi\":\"10.1109/ICSSE.2018.8520081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, a biochemical sensor based on surface plasmon resonance technology in heterodyne interferometry is proposed. The biochemical sensor is designed as an elongated prism that is made of BK7 glass. The two-sides of the elongated prism was coated with 2nm Ti-film and 45.5nm Au-film. On the basis of surface plasma resonance principles, the proposed biochemical sensor capitalizes on the adhesion activity between test fluids and metal films. Attenuated total reflection occurs when light permeates metal films, resulting in the phase variation. Thus, the fluid properties can be determined by measuring the phase of the exit light. Because adding chemicals or agents to the proposed biosensor is unnecessary, the properties of the measured sample are unaffected during measurements. With the biochemical sensor, the refractive index of the tested medium can be obtained only by measuring the phase difference between the p-and s-polarization lights due to the multiple attenuated total-internal reflections (MATRs) effect. The photoelectric biosensor has a sensitivity of up to $2.6\\\\times 10^{4}$ degree/refractive index. Besides, the best resolution of the sensor can reach $3.8\\\\times 10^{-7}$ refractive index unit (RIU). It also features several advantages such as instantaneous measurement, high sensitivity, simple experimental architecture, and low cost.\",\"PeriodicalId\":431387,\"journal\":{\"name\":\"2018 International Conference on System Science and Engineering (ICSSE)\",\"volume\":\"633 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on System Science and Engineering (ICSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSE.2018.8520081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE.2018.8520081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Biochemical Sensor Based on Surface Plasmon Resonance Technology in Heterodyne Interferometry
In the paper, a biochemical sensor based on surface plasmon resonance technology in heterodyne interferometry is proposed. The biochemical sensor is designed as an elongated prism that is made of BK7 glass. The two-sides of the elongated prism was coated with 2nm Ti-film and 45.5nm Au-film. On the basis of surface plasma resonance principles, the proposed biochemical sensor capitalizes on the adhesion activity between test fluids and metal films. Attenuated total reflection occurs when light permeates metal films, resulting in the phase variation. Thus, the fluid properties can be determined by measuring the phase of the exit light. Because adding chemicals or agents to the proposed biosensor is unnecessary, the properties of the measured sample are unaffected during measurements. With the biochemical sensor, the refractive index of the tested medium can be obtained only by measuring the phase difference between the p-and s-polarization lights due to the multiple attenuated total-internal reflections (MATRs) effect. The photoelectric biosensor has a sensitivity of up to $2.6\times 10^{4}$ degree/refractive index. Besides, the best resolution of the sensor can reach $3.8\times 10^{-7}$ refractive index unit (RIU). It also features several advantages such as instantaneous measurement, high sensitivity, simple experimental architecture, and low cost.