Zhao-Ying Zhou, Jun Chen, Mingyuan Tao, P. Zhang, Meng Xu
{"title":"事件触发模型预测控制在自动驾驶车辆路径跟踪中的实验验证","authors":"Zhao-Ying Zhou, Jun Chen, Mingyuan Tao, P. Zhang, Meng Xu","doi":"10.1109/eIT57321.2023.10187304","DOIUrl":null,"url":null,"abstract":"This paper presents an experimental validation of an event-triggered model predictive control (MPC) for autonomous vehicle (AV) path-tracking control using real-world testing. Path tracking is a critical aspect of AV control, and MPC is a popular control method for this task. However, traditional MPC requires extensive computational resources to solve real-time optimization problems, which can be challenging to implement in the real world. To address this issue, event-triggered MPC, which only solves the optimization problem when a triggering event occurs, has been proposed in the literature to reduce computational requirements. This paper then conducts experimental validation, where event-triggered MPC is compared to traditional time-triggered MPC through real-world testing, and the results demonstrate that the event-triggered MPC method not only offers a significant reduction in computation compared to timetriggered MPC but also improves the control performance.","PeriodicalId":113717,"journal":{"name":"2023 IEEE International Conference on Electro Information Technology (eIT)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Validation of Event-Triggered Model Predictive Control for Autonomous Vehicle Path Tracking\",\"authors\":\"Zhao-Ying Zhou, Jun Chen, Mingyuan Tao, P. Zhang, Meng Xu\",\"doi\":\"10.1109/eIT57321.2023.10187304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an experimental validation of an event-triggered model predictive control (MPC) for autonomous vehicle (AV) path-tracking control using real-world testing. Path tracking is a critical aspect of AV control, and MPC is a popular control method for this task. However, traditional MPC requires extensive computational resources to solve real-time optimization problems, which can be challenging to implement in the real world. To address this issue, event-triggered MPC, which only solves the optimization problem when a triggering event occurs, has been proposed in the literature to reduce computational requirements. This paper then conducts experimental validation, where event-triggered MPC is compared to traditional time-triggered MPC through real-world testing, and the results demonstrate that the event-triggered MPC method not only offers a significant reduction in computation compared to timetriggered MPC but also improves the control performance.\",\"PeriodicalId\":113717,\"journal\":{\"name\":\"2023 IEEE International Conference on Electro Information Technology (eIT)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Electro Information Technology (eIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eIT57321.2023.10187304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Electro Information Technology (eIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eIT57321.2023.10187304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental Validation of Event-Triggered Model Predictive Control for Autonomous Vehicle Path Tracking
This paper presents an experimental validation of an event-triggered model predictive control (MPC) for autonomous vehicle (AV) path-tracking control using real-world testing. Path tracking is a critical aspect of AV control, and MPC is a popular control method for this task. However, traditional MPC requires extensive computational resources to solve real-time optimization problems, which can be challenging to implement in the real world. To address this issue, event-triggered MPC, which only solves the optimization problem when a triggering event occurs, has been proposed in the literature to reduce computational requirements. This paper then conducts experimental validation, where event-triggered MPC is compared to traditional time-triggered MPC through real-world testing, and the results demonstrate that the event-triggered MPC method not only offers a significant reduction in computation compared to timetriggered MPC but also improves the control performance.